BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 1159535)

  • 1. Effect of molybdate on sulfide production from methionine and sulfate by ruminal microorganisms of sheep.
    Huisingh J; Milholland DC; Matrone G
    J Nutr; 1975 Sep; 105(9):1199-205. PubMed ID: 1159535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of molybdenum on the conversion of sulphate to sulphide and microbial-protein-sulphur in the rumen of sheep.
    Gawthorne JM; Nader CJ
    Br J Nutr; 1976 Jan; 35(1):11-23. PubMed ID: 1244837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of sulfate reduction to sulfide by 9,10-anthraquinone in in vitro ruminal fermentations.
    Kung L; Hession AO; Bracht JP
    J Dairy Sci; 1998 Aug; 81(8):2251-6. PubMed ID: 9749391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of nitrate and molybdenum on sulfur utilization by rumen microorganisms.
    Spears JW; Bush LP; Ely DG
    J Dairy Sci; 1977 Dec; 60(12):1889-93. PubMed ID: 563877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ruminal microbial alterations associated with sulfide generation in steers with dietary sulfate-induced polioencephalomalacia.
    Cummings BA; Gould DH; Caldwell DR; Hamar DW
    Am J Vet Res; 1995 Oct; 56(10):1390-5. PubMed ID: 8928960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Desulfovibrio of the sheep rumen.
    Howard BH; Hungate RE
    Appl Environ Microbiol; 1976 Oct; 32(4):598-602. PubMed ID: 984832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aspects of sulfate utilization by the microorganisms of the ovine rumen.
    Halverson AW; Williams GD; Paulson GD
    J Nutr; 1968 Jul; 95(3):363-8. PubMed ID: 5665638
    [No Abstract]   [Full Text] [Related]  

  • 8. Sulfur and methionine metabolism in sheep. I. First approximations of sulfur pools in and sulfur flows from the reticulo-rumen.
    Doyle PT; Moir RJ
    Aust J Biol Sci; 1979 Feb; 32(1):51-63. PubMed ID: 485976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper-molybdenum interactions with the sulfate-reducing system in rumen microorganisms.
    Huisingh J; Matrone G
    Proc Soc Exp Biol Med; 1972 Feb; 139(2):518-21. PubMed ID: 5059042
    [No Abstract]   [Full Text] [Related]  

  • 10. Assessment of ruminal hydrogen sulfide or urine thiosulfate as diagnostic tools for sulfur induced polioencephalomalacia in cattle.
    Drewnoski ME; Ensley SM; Beitz DC; Schoonmaker JP; Loy DD; Imerman PM; Rathje JA; Hansen SL
    J Vet Diagn Invest; 2012 Jul; 24(4):702-9. PubMed ID: 22643342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen sulfide: a toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation.
    Barton LL; Fardeau ML; Fauque GD
    Met Ions Life Sci; 2014; 14():237-77. PubMed ID: 25416397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identity and interactions of rumen microbes associated with dietary sulfate-induced polioencephalomalacia in cattle.
    Cummings BA; Caldwell DR; Gould DH; Hamar DW
    Am J Vet Res; 1995 Oct; 56(10):1384-9. PubMed ID: 8928959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of supplemental molybdenum on animal performance, liver copper concentrations, ruminal hydrogen sulfide concentrations, and the appearance of sulfur and molybdenum toxicity in steers receiving fiber-based diets.
    Kessler KL; Olson KC; Wright CL; Austin KJ; Johnson PS; Cammack KM
    J Anim Sci; 2012 Dec; 90(13):5005-12. PubMed ID: 22871931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Sulfate reduction and biosynthesis of sulfur containing amino acids (author's transl)].
    Naiki N; Yamagata S
    Seikagaku; 1974 Mar; 46(3):103-23. PubMed ID: 4367617
    [No Abstract]   [Full Text] [Related]  

  • 15. Influence of dietary supplementation of herb extracts on volatile sulfur production in pig large intestine.
    Ushid K; Maekawa M; Arakawa T
    J Nutr Sci Vitaminol (Tokyo); 2002 Feb; 48(1):18-23. PubMed ID: 12026183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of biogenic H(2)S production with nitrite and molybdate.
    Nemati M; Mazutinec TJ; Jenneman GE; Voordouw G
    J Ind Microbiol Biotechnol; 2001 Jun; 26(6):350-5. PubMed ID: 11571618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep.
    van Zijderveld SM; Gerrits WJ; Apajalahti JA; Newbold JR; Dijkstra J; Leng RA; Perdok HB
    J Dairy Sci; 2010 Dec; 93(12):5856-66. PubMed ID: 21094759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volatile sulfur production by pig cecal bacteria in batch culture and screening inhibitors of sulfate reducing bacteria.
    Arakawa T; Ishikawa Y; Ushida K
    J Nutr Sci Vitaminol (Tokyo); 2000 Aug; 46(4):193-8. PubMed ID: 11185657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary sulfur concentration affects rumen hydrogen sulfide concentrations in feedlot steers during transition and finishing.
    Drewnoski ME; Richter EL; Hansen SL
    J Anim Sci; 2012 Dec; 90(12):4478-86. PubMed ID: 23255818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfate assimilation regulates hydrogen sulfide production independent of lifespan and reactive oxygen species under methionine restriction condition in yeast.
    Choi KM; Kim S; Kim S; Lee HM; Kaya A; Chun BH; Lee YK; Park TS; Lee CK; Eyun SI; Lee BC
    Aging (Albany NY); 2019 Jun; 11(12):4254-4273. PubMed ID: 31254461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.