These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 1159535)

  • 41. Elemental sulfur toxicosis in a flock of sheep.
    Bulgin MS; Lincoln SD; Mather G
    J Am Vet Med Assoc; 1996 Apr; 208(7):1063-5. PubMed ID: 8621320
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assimilatory sulfate reduction by the hemoflagellate Leishmania tarentolae.
    Krassner SM; Da Cruz FS
    J Protozool; 1971 Nov; 18(4):718-22. PubMed ID: 5133128
    [No Abstract]   [Full Text] [Related]  

  • 43. Synthesis of sulfur amino acids from inorganic sulfate by ruminants. II. Synthesis of cystine and methionine from sodium sulfate by the goat and by the microorganisms of the rumen of the ewe.
    BLOCK RJ; STEKOL JA; LOOSLI JK
    Arch Biochem Biophys; 1951 Oct; 33(3):353-63. PubMed ID: 14886022
    [No Abstract]   [Full Text] [Related]  

  • 44. Polioencephalomalacia.
    Gould DH
    J Anim Sci; 1998 Jan; 76(1):309-14. PubMed ID: 9464912
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sulfur and methionine metabolism in sheep. II. Quantitative estimates of sulfur metabolism in the sheep's stomach.
    Doyle PT; Moir RJ
    Aust J Biol Sci; 1979 Feb; 32(1):65-76. PubMed ID: 485977
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of molybdenum and sulfur on copper metabolism in sheep: comparison of elemental sulfur and sulfate.
    Lamand M
    Ann Rech Vet; 1989; 20(1):103-6. PubMed ID: 2930132
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hydrogen sulfide production from cysteine and homocysteine by periodontal and oral bacteria.
    Yoshida A; Yoshimura M; Ohara N; Yoshimura S; Nagashima S; Takehara T; Nakayama K
    J Periodontol; 2009 Nov; 80(11):1845-51. PubMed ID: 19905954
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of sulfur content in wet or dry distillers grains fed at several inclusions on cattle growth performance, ruminal parameters, and hydrogen sulfide.
    Sarturi JO; Erickson GE; Klopfenstein TJ; Vasconcelos JT; Griffin WA; Rolfe KM; Benton JR; Bremer VR
    J Anim Sci; 2013 Oct; 91(10):4849-60. PubMed ID: 23893985
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sulfur Cycling and the Intestinal Microbiome.
    Barton LL; Ritz NL; Fauque GD; Lin HC
    Dig Dis Sci; 2017 Sep; 62(9):2241-2257. PubMed ID: 28766244
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Production of volatile sulfur compounds by microorganisms.
    Kadota H; Ishida Y
    Annu Rev Microbiol; 1972; 26():127-38. PubMed ID: 4562806
    [No Abstract]   [Full Text] [Related]  

  • 51. Alteration of sulfate and hydrogen metabolism in the human colon by changing intestinal transit rate.
    Lewis S; Cochrane S
    Am J Gastroenterol; 2007 Mar; 102(3):624-33. PubMed ID: 17156141
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system.
    Satoh H; Odagiri M; Ito T; Okabe S
    Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molybdate:sulfate ratio affects redox metabolism and viability of the dinoflagellate Lingulodinium polyedrum.
    Barros MP; Hollnagel HC; Glavina AB; Soares CO; Ganini D; Dagenais-Bellefeuille S; Morse D; Colepicolo P
    Aquat Toxicol; 2013 Oct; 142-143():195-202. PubMed ID: 24036534
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Changes in the amino acid levels in hydrolysates of bacteria adhering to the rumen in sheep during feeding with high and low nitrogen diets].
    Legáth J
    Vet Med (Praha); 1992; 37(5-6):293-305. PubMed ID: 1413391
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Studies on the utilization of methionine sulfoxide and methionine sulfone by rumen microorganisms in vitro.
    Or-Rashid MM; Onodera R; Wadud S
    Amino Acids; 2003; 24(1-2):135-9. PubMed ID: 12624745
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inhibitory effects of sulphur compounds, copper and tungsten on nitrate reduction by mixed rumen micro-organisms.
    Takahashi J; Johchi N; Fujita H
    Br J Nutr; 1989 May; 61(3):741-8. PubMed ID: 2758022
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The stimulatory effect of the organic sulfur supplement, mercaptopropane sulfonic acid on cellulolytic rumen microorganisms and microbial protein synthesis in cattle fed low sulfur roughages.
    McSweeney CS; Denman SE; Conlan LL; Prasad CS; Anandan S; Chandrasekharaiah M; Sampath KT
    Animal; 2009 Jun; 3(6):802-9. PubMed ID: 22444766
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metabolism of DL-methionine and methionine analogs by rumen microorganisms.
    Patterson JA; Kung L
    J Dairy Sci; 1988 Dec; 71(12):3292-301. PubMed ID: 3235731
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lead removal and toxicity reduction from industrial wastewater through biological sulfate reduction process.
    Teekayuttasakul P; Annachhatre AP
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Oct; 43(12):1424-30. PubMed ID: 18780220
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of methionine hydroxy analog and DL-methionine on rumen protozoa and volatile fatty acids.
    Lundquist RG; Stern MD; Otterby DE; Linn JG
    J Dairy Sci; 1985 Nov; 68(11):3055-8. PubMed ID: 3935701
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.