These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 11595787)

  • 1. Gene expression profiling of the response to thermal injury in human cells.
    Dinh HK; Zhao B; Schuschereba ST; Merrill G; Bowman PD
    Physiol Genomics; 2001 Oct; 7(1):3-13. PubMed ID: 11595787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytoprotection against thermal injury: evaluation of herbimycin A by cell viability and cDNA arrays.
    Dinh HK; Stavchansky S; Schuschereba ST; Stuck BE; Bowman PD
    Pharmacogenomics J; 2002; 2(5):318-26. PubMed ID: 12439738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat shock response of killifish (Fundulus heteroclitus): candidate gene and heterologous microarray approaches.
    Healy TM; Tymchuk WE; Osborne EJ; Schulte PM
    Physiol Genomics; 2010 Apr; 41(2):171-84. PubMed ID: 20103695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoprotection of synaptic transmission in a Drosophila heat shock factor mutant is accompanied by increased expression of Hsp83 and DnaJ-1.
    Neal SJ; Karunanithi S; Best A; So AK; Tanguay RM; Atwood HL; Westwood JT
    Physiol Genomics; 2006 May; 25(3):493-501. PubMed ID: 16595740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the constitutive pig ovary heat shock chaperone machinery and its response to acute thermal stress or to seasonal variations.
    Pennarossa G; Maffei S; Rahman MM; Berruti G; Brevini TA; Gandolfi F
    Biol Reprod; 2012 Nov; 87(5):119. PubMed ID: 23018186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways.
    Swindell WR; Huebner M; Weber AP
    BMC Genomics; 2007 May; 8():125. PubMed ID: 17519032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of differentially expressed genes in Chrysanthemum nankingense (Asteraceae) under heat stress by RNA Seq.
    Sun J; Ren L; Cheng Y; Gao J; Dong B; Chen S; Chen F; Jiang J
    Gene; 2014 Nov; 552(1):59-66. PubMed ID: 25200493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Regulation of heat shock gene expression in response to stress].
    Garbuz DG
    Mol Biol (Mosk); 2017; 51(3):400-417. PubMed ID: 28707656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential expression patterns among heat-shock protein genes and thermal responses in the whitefly Bemisia tabaci (MEAM 1).
    Díaz F; Orobio RF; Chavarriaga P; Toro-Perea N
    J Therm Biol; 2015 Aug; 52():199-207. PubMed ID: 26267515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acclimation of killifish to thermal extremes of hot spring: Transcription of gonadal and liver heat shock genes.
    Akbarzadeh A; Leder EH
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Jan; 191():89-97. PubMed ID: 26459983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of acute heat shock on gene expression by human peripheral blood mononuclear cells.
    Sonna LA; Gaffin SL; Pratt RE; Cullivan ML; Angel KC; Lilly CM
    J Appl Physiol (1985); 2002 May; 92(5):2208-20. PubMed ID: 11960976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential gene expressions in testes of L2 strain Taiwan country chicken in response to acute heat stress.
    Wang SH; Cheng CY; Tang PC; Chen CF; Chen HH; Lee YP; Huang SY
    Theriogenology; 2013 Jan; 79(2):374-82.e1-7. PubMed ID: 23154143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional profiles of human epithelial cells in response to heat: computational evidence for novel heat shock proteins.
    Laramie JM; Chung TP; Brownstein B; Stormo GD; Cobb JP
    Shock; 2008 May; 29(5):623-30. PubMed ID: 17885648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome analysis and identification of significantly differentially expressed genes in Holstein calves subjected to severe thermal stress.
    Srikanth K; Lee E; Kwan A; Lim Y; Lee J; Jang G; Chung H
    Int J Biometeorol; 2017 Nov; 61(11):1993-2008. PubMed ID: 28900747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide analysis of the heat stress response in Zebu (Sahiwal) cattle.
    Mehla K; Magotra A; Choudhary J; Singh AK; Mohanty AK; Upadhyay RC; Srinivasan S; Gupta P; Choudhary N; Antony B; Khan F
    Gene; 2014 Jan; 533(2):500-7. PubMed ID: 24080481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microarray analysis of cellular thermotolerance.
    Beckham JT; Wilmink GJ; Opalenik SR; Mackanos MA; Abraham AA; Takahashi K; Contag CH; Takahashi T; Jansen ED
    Lasers Surg Med; 2010 Dec; 42(10):752-65. PubMed ID: 21246580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulated heat shock protein 27 expression in human retinal pigment epithelium.
    Strunnikova N; Baffi J; Gonzalez A; Silk W; Cousins SW; Csaky KG
    Invest Ophthalmol Vis Sci; 2001 Aug; 42(9):2130-8. PubMed ID: 11481282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gut myoelectrical activity induces heat shock response in Escherichia coli and Caco-2 cells.
    Laubitz D; Jankowska A; Sikora A; Woliński J; Zabielski R; Grzesiuk E
    Exp Physiol; 2006 Sep; 91(5):867-75. PubMed ID: 16728456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus.
    Fangue NA; Hofmeister M; Schulte PM
    J Exp Biol; 2006 Aug; 209(Pt 15):2859-72. PubMed ID: 16857869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upregulation of the Hsp104 chaperone at physiological temperature during recovery from thermal insult.
    Seppä L; Hänninen AL; Makarow M
    Mol Microbiol; 2004 Apr; 52(1):217-25. PubMed ID: 15049822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.