These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 11596751)

  • 1. Compositional and chiral profiles of weathered chlordane residues in soil.
    Eitzer BD; Mattina MI; Iannucci-Berger W
    Environ Toxicol Chem; 2001 Oct; 20(10):2198-204. PubMed ID: 11596751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cycling of weathered chlordane residues in the environment: compositional and chiral profiles in contiguous soil, vegetation, and air compartments.
    Mattina MI; White J; Eitzer B; Iannucci-Berger W
    Environ Toxicol Chem; 2002 Feb; 21(2):281-8. PubMed ID: 11833796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracking chlordane compositional and chiral profiles in soil and vegetation.
    White JC; Mattina MI; Eitzer BD; Lannucci-Berger W
    Chemosphere; 2002 May; 47(6):639-46. PubMed ID: 12047075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persistent organic pollutants in the environment: chlordane residues in compost.
    Lee WY; Lannucci-Berger W; Eitzer BD; White JC; Mattina MI
    J Environ Qual; 2003; 32(1):224-31. PubMed ID: 12549562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volatilization of weathered chiral and achiral chlordane residues from soil.
    Eitzer BD; Iannucci-Berger W; Mattina MI
    Environ Sci Technol; 2003 Nov; 37(21):4887-93. PubMed ID: 14620814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant uptake and translocation of air-borne chlordane and comparison with the soil-to-plant route.
    Lee WY; Iannucci-Berger WA; Eitzer BD; White JC; Mattina MI
    Chemosphere; 2003 Oct; 53(2):111-21. PubMed ID: 12892673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant uptake and translocation of highly weathered, soil-bound technical chlordane residues: data from field and rhizotron studies.
    Mattina MI; Eitzer BD; Iannucci-Berger W; Lee WY; White JC
    Environ Toxicol Chem; 2004 Nov; 23(11):2756-62. PubMed ID: 15559292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlordane enantiomers and temporal trends of chlordane isomers in arctic air.
    Bidleman TF; Jantunen LM; Helm PA; Brorström-Lundén E; Juntto S
    Environ Sci Technol; 2002 Feb; 36(4):539-44. PubMed ID: 11883417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inheritance profile of weathered chlordane and p,p'-DDTs accumulation by Cucurbita pepo hybrids.
    Isleyen M; Sevim P; Hawthorne J; Berger W; White JC
    Int J Phytoremediation; 2013; 15(9):861-76. PubMed ID: 23819281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake by cucurbitaceae of soil-Bome contaminants depends upon plant genotype and pollutant properties.
    Mattina MI; Isleyen M; Eitzer BD; Iannucci-Berger W; White JC
    Environ Sci Technol; 2006 Mar; 40(6):1814-21. PubMed ID: 16570602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentration and transport of chlordane and nonachlor associated with suspended sediment in the Mississippi River, May 1988 to June 1990.
    Rostad CE
    Arch Environ Contam Toxicol; 1997 Nov; 33(4):369-77. PubMed ID: 9419255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlordane uptake and its translocation in food crops.
    Mattina MJ; Iannucci-Berger W; Dykas L
    J Agric Food Chem; 2000 May; 48(5):1909-15. PubMed ID: 10820114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concentration and chiral signature of chlordane in soils and sediments of the Central Tibetan Plateau, China: Transformation in the surficial process.
    Yuan GL; Wu MZ; Sun Y; Li J; Han P; Wang GH
    Environ Pollut; 2015 Nov; 206():282-8. PubMed ID: 26204573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photodegradation fates of cis-chlordane, trans-chlordane, and heptachlor in ethanol.
    Yamada S; Naito Y; Funakawa M; Nakai S; Hosomi M
    Chemosphere; 2008 Feb; 70(9):1669-75. PubMed ID: 17804035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a point source of chlordane contamination from a timber treatment facility.
    Simpson CD; Smith TJ; Burggraaf S; Wilkins AL; Langdon AG; Wilcock RJ
    Bull Environ Contam Toxicol; 1995 Aug; 55(2):289-95. PubMed ID: 7579937
    [No Abstract]   [Full Text] [Related]  

  • 16. Chiral pesticides in soil and water and exchange with the atmosphere.
    Bidleman TF; Leone AD; Falconer RL; Harner T; Jantunen LM; Wiberg K; Helm PA; Diamond ML; Loo B
    ScientificWorldJournal; 2002 Feb; 2():357-73. PubMed ID: 12806022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlordane and heptachlor are metabolized enantioselectively by rat liver microsomes.
    Kania-Korwel I; Lehmler HJ
    Environ Sci Technol; 2013 Aug; 47(15):8913-22. PubMed ID: 23799267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantiomer fractions of chlordane components in sediment from U.S. Geological Survey sites in lakes and rivers.
    Ulrich EM; Foreman WT; Van Metre PC; Wilson JT; Rounds SA
    Sci Total Environ; 2009 Nov; 407(22):5884-93. PubMed ID: 19726072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of technical chlordane by liquid chromatography with atmospheric pressure chemical ionization mass spectrometry.
    Moriwaki H; Yamaguchi M; Hashimoto H; Arakawa R
    Rapid Commun Mass Spectrom; 2004; 18(2):225-7. PubMed ID: 14745774
    [No Abstract]   [Full Text] [Related]  

  • 20. Chiral organochlorine pesticide signatures in global background soils.
    Kurt-Karakus PB; Bidleman TF; Jones KC
    Environ Sci Technol; 2005 Nov; 39(22):8671-7. PubMed ID: 16323761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.