BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 11596774)

  • 1. Biotic ligand model of the acute toxicity of metals. 1. Technical basis.
    Di Toro DM; Allen HE; Bergman HL; Meyer JS; Paquin PR; Santore RC
    Environ Toxicol Chem; 2001 Oct; 20(10):2383-96. PubMed ID: 11596774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia.
    Santore RC; Di Toro DM; Paquin PR; Allen HE; Meyer JS
    Environ Toxicol Chem; 2001 Oct; 20(10):2397-402. PubMed ID: 11596775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals.
    Niyogi S; Wood CM
    Environ Sci Technol; 2004 Dec; 38(23):6177-92. PubMed ID: 15597870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotic ligand modeling approach: Synthesis of the effect of major cations on the toxicity of metals to soil and aquatic organisms.
    Ardestani MM; van Straalen NM; van Gestel CA
    Environ Toxicol Chem; 2015 Oct; 34(10):2194-204. PubMed ID: 25953362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using multiple metal-gill binding models and the toxic unit concept to help reconcile multiple-metal toxicity results.
    Playle RC
    Aquat Toxicol; 2004 May; 67(4):359-70. PubMed ID: 15084412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new model for predicting time course toxicity of heavy metals based on Biotic Ligand Model (BLM).
    Hatano A; Shoji R
    Comp Biochem Physiol C Toxicol Pharmacol; 2010 Jan; 151(1):25-32. PubMed ID: 19689929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An application of the biotic ligand model to predict the toxic effects of metal mixtures.
    Kamo M; Nagai T
    Environ Toxicol Chem; 2008 Jul; 27(7):1479-87. PubMed ID: 18260697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Generalized Bioavailability Model (gBAM) for Predicting Chronic Copper Toxicity to Freshwater Fish.
    Nys C; Vlaeminck K; Van Sprang P; De Schamphelaere KAC
    Environ Toxicol Chem; 2020 Dec; 39(12):2424-2436. PubMed ID: 32573793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the toxicity of metal mixtures.
    Balistrieri LS; Mebane CA
    Sci Total Environ; 2014 Jan; 466-467():788-99. PubMed ID: 23973545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of the biotic ligand model to predict pulse-exposure toxicity of copper to fathead minnows (Pimephales promelas).
    Meyer JS; Boese CJ; Morris JM
    Aquat Toxicol; 2007 Aug; 84(2):268-78. PubMed ID: 17659358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicity of copper and cadmium in combinations to Duckweed analyzed by the biotic ligand model.
    Hatano A; Shoji R
    Environ Toxicol; 2008 Jun; 23(3):372-8. PubMed ID: 18214895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extension of the biotic ligand model of acute toxicity to a physiologically-based model of the survival time of rainbow trout (Oncorhynchus mykiss) exposed to silver.
    Paquin PR; Zoltay V; Winfield RP; Wu KB; Mathew R; Santore RC; Di Toro DM
    Comp Biochem Physiol C Toxicol Pharmacol; 2002 Sep; 133(1-2):305-43. PubMed ID: 12356535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating empirically dissolved organic matter quality for WHAM VI using the DOM optical properties: a case study of Cu-Al-DOM interactions.
    Chappaz A; Curtis PJ
    Environ Sci Technol; 2013 Feb; 47(4):2001-7. PubMed ID: 23331061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and application of a biotic ligand model for predicting the chronic toxicity of dissolved and precipitated aluminum to aquatic organisms.
    Santore RC; Ryan AC; Kroglund F; Rodriguez PH; Stubblefield WA; Cardwell AS; Adams WJ; Nordheim E
    Environ Toxicol Chem; 2018 Jan; 37(1):70-79. PubMed ID: 29080370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model predictions of copper speciation in coastal water compared to measurements by analytical voltammetry.
    Ndungu K
    Environ Sci Technol; 2012 Jul; 46(14):7644-52. PubMed ID: 22724636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of dissolved organic matter source on phytotoxicity to Lemna aequinoctialis.
    Shoji R
    Aquat Toxicol; 2008 May; 87(3):210-4. PubMed ID: 18359523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of biotic ligand models (BLM) and bioaccumulation kinetics into a mechanistic framework for metal uptake in aquatic organisms.
    Veltman K; Huijbregts MA; Hendriks AJ
    Environ Sci Technol; 2010 Jul; 44(13):5022-8. PubMed ID: 20515030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of water chemistry on the acute toxicity of nickel to the cladoceran Daphnia pulex and the development of a biotic ligand model.
    Kozlova T; Wood CM; McGeer JC
    Aquat Toxicol; 2009 Feb; 91(3):221-8. PubMed ID: 19111357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactive effects of waterborne metals in binary mixtures on short-term gill-metal binding and ion uptake in rainbow trout (Oncorhynchus mykiss).
    Niyogi S; Nadella SR; Wood CM
    Aquat Toxicol; 2015 Aug; 165():109-19. PubMed ID: 26057931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of water chemistry variables on gill binding and acute toxicity of cadmium in rainbow trout (Oncorhynchus mykiss): A biotic ligand model (BLM) approach.
    Niyogi S; Kent R; Wood CM
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Nov; 148(4):305-14. PubMed ID: 18577468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.