These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 11597347)

  • 1. Effect of phospholipid on trichosanthin adsorption at the air-water interface.
    Xia XF; Wang F; Sui SF
    Biochim Biophys Acta; 2001 Nov; 1515(1):1-11. PubMed ID: 11597347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trichosanthin's interfacial interactions with phospholipids: a monolayer study.
    Xia XF; Wang F; Yang M; Sui SF
    Colloids Surf B Biointerfaces; 2004 Dec; 39(3):105-12. PubMed ID: 15556338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction of trichosanthin with supported phospholipid membranes studied by surface plasmon resonance.
    Lu Y; Xia X; Sui S
    Biochim Biophys Acta; 2001 Jun; 1512(2):308-16. PubMed ID: 11406108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The membrane insertion of trichosanthin is membrane-surface-pH dependent.
    Xia XF; Sui SF
    Biochem J; 2000 Aug; 349 Pt 3(Pt 3):835-41. PubMed ID: 10903146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined surface pressure-interfacial shear rheology studies of the interaction of proteins with spread phospholipid monolayers at the air-water interface.
    Roberts SA; Kellaway IW; Taylor KM; Warburton B; Peters K
    Int J Pharm; 2005 Aug; 300(1-2):48-55. PubMed ID: 15970408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trichosanthin induces leakage and membrane fusion of liposome.
    Xia XF; Zhang F; Shaw PC; Sui SF
    IUBMB Life; 2003 Dec; 55(12):681-7. PubMed ID: 14769004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallization and preliminary x-ray crystallographic studies of trichosanthin delta C7.
    Li X; Ding Y; Wang Z; Liu Y; Dong Y; Shaw P; Rao Z; Too H
    Protein Pept Lett; 2002 Jun; 9(3):269-73. PubMed ID: 12144525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and Functional Investigation and Pharmacological Mechanism of Trichosanthin, a Type 1 Ribosome-Inactivating Protein.
    Shi WW; Wong KB; Shaw PC
    Toxins (Basel); 2018 Aug; 10(8):. PubMed ID: 30127254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of TYR70 in the N-glycosidase activity of neo-trichosanthin.
    Yan L; Wu S; Li HG; Li JH; Wong RN; Shi QL; Dong YC
    Toxicon; 1999 Jul; 37(7):961-72. PubMed ID: 10484744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregates of saturated phospholipids at the air-water interface.
    Evans RW
    Chem Phys Lipids; 1995 Nov; 78(2):163-75. PubMed ID: 8565114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface Gibbs energy interaction of phospholipid/cholesterol monolayers deposited on mica with probe liquids.
    Jurak M
    Chem Phys Lipids; 2014 Oct; 183():60-7. PubMed ID: 24882251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
    Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M
    Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-function relationship of trichosanthin.
    Ke YB; Chen JK; Nie HL; He XH; Ke XY; Wang YH
    Life Sci; 1997; 60(7):465-72. PubMed ID: 9042374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Change in pH-dependent membrane insertion characteristics of trichosanthin caused by deletion of its last seven C-terminal amino acid residues.
    Zhang F; Lu YJ; Shaw PC; Sui SF
    Biochemistry (Mosc); 2003 Apr; 68(4):436-45. PubMed ID: 12765527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate binding and catalysis in trichosanthin occur in different sites as revealed by the complex structures of several E85 mutants.
    Guo Q; Zhou W; Too HM; Li J; Liu Y; Bartlam M; Dong Y; Wong KB; Shaw PC; Rao Z
    Protein Eng; 2003 Jun; 16(6):391-6. PubMed ID: 12874371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures of eukaryotic ribosomal stalk proteins and its complex with trichosanthin, and their implications in recruiting ribosome-inactivating proteins to the ribosomes.
    Choi AK; Wong EC; Lee KM; Wong KB
    Toxins (Basel); 2015 Feb; 7(3):638-47. PubMed ID: 25723321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structural basis of Trp192 and the C-terminal region in trichosanthin for activity and conformational stability.
    Ding Y; Too H; Wang Z; Liu Y; Bartlam M; Dong Y; Wong K; Shaw P; Rao Z
    Protein Eng; 2003 May; 16(5):351-6. PubMed ID: 12826726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Position 120-123, a potential active site of trichosanthin.
    Nie H; Cai X; He X; Xu L; Ke X; Ke Y; Tam SC
    Life Sci; 1998; 62(6):491-500. PubMed ID: 9464461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures of the complexes of trichosanthin with four substrate analogs and catalytic mechanism of RNA N-glycosidase.
    Gu YJ; Xia ZX
    Proteins; 2000 Apr; 39(1):37-46. PubMed ID: 10737925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between trichosanthin, a ribosome-inactivating protein, and the ribosomal stalk protein P2 by chemical shift perturbation and mutagenesis analyses.
    Chan DS; Chu LO; Lee KM; Too PH; Ma KW; Sze KH; Zhu G; Shaw PC; Wong KB
    Nucleic Acids Res; 2007; 35(5):1660-72. PubMed ID: 17308345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.