BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11597590)

  • 21. Sodium and calcium channels in bovine chromaffin cells.
    Fenwick EM; Marty A; Neher E
    J Physiol; 1982 Oct; 331():599-635. PubMed ID: 6296372
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels.
    Horrigan FT; Aldrich RW
    J Gen Physiol; 2002 Sep; 120(3):267-305. PubMed ID: 12198087
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of hypoxia induced by Na2S2O4 on intracellular calcium and resting potential of mouse glomus cells.
    Zhang XQ; Eyzaguirre C
    Brain Res; 1999 Feb; 818(1):118-26. PubMed ID: 9914444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrogen sulfide and hypoxia-induced changes in TASK (K2P3/9) activity and intracellular Ca(2+) concentration in rat carotid body glomus cells.
    Kim D; Kim I; Wang J; White C; Carroll JL
    Respir Physiol Neurobiol; 2015 Aug; 215():30-8. PubMed ID: 25956223
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Voltage-dependent gating of single gap junction channels in an insect cell line.
    Bukauskas FF; Weingart R
    Biophys J; 1994 Aug; 67(2):613-25. PubMed ID: 7524710
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interplay between cystic fibrosis transmembrane regulator and gap junction channels made of connexins 45, 40, 32 and 50 expressed in oocytes.
    Kotsias BA; Salim M; Peracchia LL; Peracchia C
    J Membr Biol; 2006; 214(1):1-8. PubMed ID: 17546509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heteromeric TASK-1/TASK-3 is the major oxygen-sensitive background K+ channel in rat carotid body glomus cells.
    Kim D; Cavanaugh EJ; Kim I; Carroll JL
    J Physiol; 2009 Jun; 587(Pt 12):2963-75. PubMed ID: 19403596
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of cardiac gap junction channel permeability and conductance by several phosphorylating conditions.
    Kwak BR; Jongsma HJ
    Mol Cell Biochem; 1996 Apr 12-26; 157(1-2):93-9. PubMed ID: 8739233
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TPA increases conductance but decreases permeability in neonatal rat cardiomyocyte gap junction channels.
    Kwak BR; van Veen TA; Analbers LJ; Jongsma HJ
    Exp Cell Res; 1995 Oct; 220(2):456-63. PubMed ID: 7556455
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differences in gap junction channels between cardiac myocytes, fibroblasts, and heterologous pairs.
    Rook MB; van Ginneken AC; de Jonge B; el Aoumari A; Gros D; Jongsma HJ
    Am J Physiol; 1992 Nov; 263(5 Pt 1):C959-77. PubMed ID: 1279981
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ryanodine receptor-mediated [Ca(2+)](i) release in glomus cells is independent of natural stimuli and does not participate in the chemosensory responses of the rat carotid body.
    Mokashi A; Roy A; Rozanov C; Daudu P; DiGuilio C; Lahiri S
    Brain Res; 2001 Oct; 916(1-2):32-40. PubMed ID: 11597588
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Local Ca2+ rise near store operated Ca2+ channels inhibits cell coupling during capacitative Ca2+ influx.
    Dakin K; Li WH
    Cell Commun Adhes; 2006; 13(1-2):29-39. PubMed ID: 16613778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oleic acid differentially affects gap junction-mediated communication in heart and vascular smooth muscle cells.
    Hirschi KK; Minnich BN; Moore LK; Burt JM
    Am J Physiol; 1993 Dec; 265(6 Pt 1):C1517-26. PubMed ID: 7506488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increased calcium current in carotid body glomus cells following in vivo acclimatization to chronic hypoxia.
    Hempleman SC
    J Neurophysiol; 1996 Sep; 76(3):1880-6. PubMed ID: 8890300
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Different ionic selectivities for connexins 26 and 32 produce rectifying gap junction channels.
    Suchyna TM; Nitsche JM; Chilton M; Harris AL; Veenstra RD; Nicholson BJ
    Biophys J; 1999 Dec; 77(6):2968-87. PubMed ID: 10585920
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CO(2) and pH independently modulate L-type Ca(2+) current in rabbit carotid body glomus cells.
    Summers BA; Overholt JL; Prabhakar NR
    J Neurophysiol; 2002 Aug; 88(2):604-12. PubMed ID: 12163513
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Augmentation of calcium current by hypoxia in carotid body glomus cells.
    Summers BA; Overholt JL; Prabhakar NR
    Adv Exp Med Biol; 2000; 475():589-99. PubMed ID: 10849699
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TASK-1 (K
    Kang D; Wang J; Hogan JO; Kim D
    Adv Exp Med Biol; 2018; 1071():35-41. PubMed ID: 30357731
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cationic channels sensitive to extracellular ATP in rat lacrimal cells.
    Vincent P
    J Physiol; 1992 Apr; 449():313-31. PubMed ID: 1381749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increase in cytosolic Ca2+ produced by hypoxia and other depolarizing stimuli activates a non-selective cation channel in chemoreceptor cells of rat carotid body.
    Kang D; Wang J; Hogan JO; Vennekens R; Freichel M; White C; Kim D
    J Physiol; 2014 May; 592(9):1975-92. PubMed ID: 24591572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.