These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 11598003)

  • 1. Exploration of the pore structure of a peptide-gated Na+ channel.
    Poët M; Tauc M; Lingueglia E; Cance P; Poujeol P; Lazdunski M; Counillon L
    EMBO J; 2001 Oct; 20(20):5595-602. PubMed ID: 11598003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic charge at position 552 affects the activation and permeation of FMRFamide-gated Na+ channels.
    Kodani Y; Furukawa Y
    J Physiol Sci; 2014 Mar; 64(2):141-50. PubMed ID: 24415456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural determinants of the closed KCa3.1 channel pore in relation to channel gating: results from a substituted cysteine accessibility analysis.
    Klein H; Garneau L; Banderali U; Simoes M; Parent L; Sauvé R
    J Gen Physiol; 2007 Apr; 129(4):299-315. PubMed ID: 17353352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A tryptophan residue (W736) in the amino-terminus of the P-segment of domain II is involved in pore formation in Na(v)1.4 voltage-gated sodium channels.
    Carbonneau E; Vijayaragavan K; Chahine M
    Pflugers Arch; 2002 Oct; 445(1):18-24. PubMed ID: 12397382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Position 552 in a FMRFamide-gated Na(+) channel affects the gating properties and the potency of FMRFamide.
    Kodani Y; Furukawa Y
    Zoolog Sci; 2010 May; 27(5):440-8. PubMed ID: 20443692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight toward epithelial Na+ channel mechanism revealed by the acid-sensing ion channel 1 structure.
    Stockand JD; Staruschenko A; Pochynyuk O; Booth RE; Silverthorn DU
    IUBMB Life; 2008 Sep; 60(9):620-8. PubMed ID: 18459164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restoration of fast inactivation in an inactivation-defective human heart sodium channel by the cysteine modifying reagent benzyl-MTS: analysis of IFM-ICM mutation.
    Chahine M; Deschênes I; Trottier E; Chen LQ; Kallen RG
    Biochem Biophys Res Commun; 1997 Apr; 233(3):606-10. PubMed ID: 9168898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epithelial sodium channel pore region. structure and role in gating.
    Sheng S; Li J; McNulty KA; Kieber-Emmons T; Kleyman TR
    J Biol Chem; 2001 Jan; 276(2):1326-34. PubMed ID: 11022046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cysteine-scanning mutagenesis and thiol modification of the Rickettsia prowazekii ATP/ADP translocase: evidence that transmembrane regions I and II, but not III, are structural components of the aqueous translocation channel.
    Alexeyev MF; Roberts RA; Daugherty RM; Audia JP; Winkler HH
    Biochemistry; 2004 Jun; 43(22):6995-7002. PubMed ID: 15170337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the Ca2+ blocking site of acid-sensing ion channel (ASIC) 1: implications for channel gating.
    Paukert M; Babini E; Pusch M; Gründer S
    J Gen Physiol; 2004 Oct; 124(4):383-94. PubMed ID: 15452199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of PIP2 activation gate in inward rectifier K+ channels.
    Xiao J; Zhen XG; Yang J
    Nat Neurosci; 2003 Aug; 6(8):811-8. PubMed ID: 12858177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cysteine-scanning mutagenesis and thiol modification of the Rickettsia prowazekii ATP/ADP translocase: evidence that TM VIII faces an aqueous channel.
    Winkler HH; Daugherty RM; Audia JP
    Biochemistry; 2003 Nov; 42(43):12562-9. PubMed ID: 14580202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cysteine accessibility in ClC-0 supports conservation of the ClC intracellular vestibule.
    Engh AM; Maduke M
    J Gen Physiol; 2005 Jun; 125(6):601-17. PubMed ID: 15897295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel.
    Lingueglia E; Champigny G; Lazdunski M; Barbry P
    Nature; 1995 Dec; 378(6558):730-3. PubMed ID: 7501021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular basis of charge movement in voltage-gated sodium channels.
    Yang N; George AL; Horn R
    Neuron; 1996 Jan; 16(1):113-22. PubMed ID: 8562074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure.
    Kellenberger S; Schild L
    Physiol Rev; 2002 Jul; 82(3):735-67. PubMed ID: 12087134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional and evolutionary consequences of pyrethroid resistance mutations in S6 transmembrane segments of a voltage-gated sodium channel.
    Zhao Y; Park Y; Adams ME
    Biochem Biophys Res Commun; 2000 Nov; 278(3):516-21. PubMed ID: 11095943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pore stoichiometry of a voltage-gated chloride channel.
    Fahlke C; Rhodes TH; Desai RR; George AL
    Nature; 1998 Aug; 394(6694):687-90. PubMed ID: 9716133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An external site controls closing of the epithelial Na+ channel ENaC.
    Kellenberger S; Gautschi I; Schild L
    J Physiol; 2002 Sep; 543(Pt 2):413-24. PubMed ID: 12205178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the pore structure of the influenza A virus M(2) ion channel by the substituted-cysteine accessibility method.
    Shuck K; Lamb RA; Pinto LH
    J Virol; 2000 Sep; 74(17):7755-61. PubMed ID: 10933681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.