BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 11598128)

  • 1. Folded monomer of HIV-1 protease.
    Ishima R; Ghirlando R; Tözsér J; Gronenborn AM; Torchia DA; Louis JM
    J Biol Chem; 2001 Dec; 276(52):49110-6. PubMed ID: 11598128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revealing the dimer dissociation and existence of a folded monomer of the mature HIV-2 protease.
    Louis JM; Ishima R; Aniana A; Sayer JM
    Protein Sci; 2009 Dec; 18(12):2442-53. PubMed ID: 19798742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autoprocessing of HIV-1 protease is tightly coupled to protein folding.
    Louis JM; Clore GM; Gronenborn AM
    Nat Struct Biol; 1999 Sep; 6(9):868-75. PubMed ID: 10467100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational and structural studies aimed at characterizing the monomer of HIV-1 protease and its precursor.
    Ishima R; Torchia DA; Louis JM
    J Biol Chem; 2007 Jun; 282(23):17190-9. PubMed ID: 17412697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the active site D25N mutation on the structure, stability, and ligand binding of the mature HIV-1 protease.
    Sayer JM; Liu F; Ishima R; Weber IT; Louis JM
    J Biol Chem; 2008 May; 283(19):13459-70. PubMed ID: 18281688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structure of the mature HIV-1 protease monomer: insight into the tertiary fold and stability of a precursor.
    Ishima R; Torchia DA; Lynch SM; Gronenborn AM; Louis JM
    J Biol Chem; 2003 Oct; 278(44):43311-9. PubMed ID: 12933791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The folding free-energy surface of HIV-1 protease: insights into the thermodynamic basis for resistance to inhibitors.
    Noel AF; Bilsel O; Kundu A; Wu Y; Zitzewitz JA; Matthews CR
    J Mol Biol; 2009 Apr; 387(4):1002-16. PubMed ID: 19150359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisiting monomeric HIV-1 protease. Characterization and redesign for improved properties.
    Louis JM; Ishima R; Nesheiwat I; Pannell LK; Lynch SM; Torchia DA; Gronenborn AM
    J Biol Chem; 2003 Feb; 278(8):6085-92. PubMed ID: 12468541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis of HIV-1 protease drug resistance: structural analysis of mutant proteases complexed with cyclic urea inhibitors.
    Ala PJ; Huston EE; Klabe RM; McCabe DD; Duke JL; Rizzo CJ; Korant BD; DeLoskey RJ; Lam PY; Hodge CN; Chang CH
    Biochemistry; 1997 Feb; 36(7):1573-80. PubMed ID: 9048541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced stability of monomer fold correlates with extreme drug resistance of HIV-1 protease.
    Louis JM; Tözsér J; Roche J; Matúz K; Aniana A; Sayer JM
    Biochemistry; 2013 Oct; 52(43):7678-88. PubMed ID: 24079831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of the HIV-1 protease dimer with interface peptides: structural studies using NMR spectroscopy combined with [2-(13)C]-Trp selective labeling.
    Frutos S; Rodriguez-Mias RA; Madurga S; Collinet B; Reboud-Ravaux M; Ludevid D; Giralt E
    Biopolymers; 2007; 88(2):164-73. PubMed ID: 17236209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive mutagenesis of HIV-1 protease: a computational geometry approach.
    Masso M; Vaisman II
    Biochem Biophys Res Commun; 2003 May; 305(2):322-6. PubMed ID: 12745077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay between protease and reverse transcriptase dimerization in a model HIV-1 polyprotein.
    Chagas BCA; Zhou X; Guerrero M; Ilina TV; Ishima R
    Protein Sci; 2024 Jul; 33(7):e5080. PubMed ID: 38896002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease.
    Tang C; Louis JM; Aniana A; Suh JY; Clore GM
    Nature; 2008 Oct; 455(7213):693-6. PubMed ID: 18833280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution NMR evidence that the HIV-1 protease catalytic aspartyl groups have different ionization states in the complex formed with the asymmetric drug KNI-272.
    Wang YX; Freedberg DI; Yamazaki T; Wingfield PT; Stahl SJ; Kaufman JD; Kiso Y; Torchia DA
    Biochemistry; 1996 Aug; 35(31):9945-50. PubMed ID: 8756455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural implications of drug-resistant mutants of HIV-1 protease: high-resolution crystal structures of the mutant protease/substrate analogue complexes.
    Mahalingam B; Louis JM; Hung J; Harrison RW; Weber IT
    Proteins; 2001 Jun; 43(4):455-64. PubMed ID: 11340661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Terminal interface conformations modulate dimer stability prior to amino terminal autoprocessing of HIV-1 protease.
    Agniswamy J; Sayer JM; Weber IT; Louis JM
    Biochemistry; 2012 Feb; 51(5):1041-50. PubMed ID: 22242794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational proteomics analysis of binding mechanisms and molecular signatures of the HIV-1 protease drugs.
    Verkhivker G
    Artif Intell Med; 2009; 45(2-3):197-206. PubMed ID: 18926674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The folding and dimerization of HIV-1 protease: evidence for a stable monomer from simulations.
    Levy Y; Caflisch A; Onuchic JN; Wolynes PG
    J Mol Biol; 2004 Jun; 340(1):67-79. PubMed ID: 15184023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human immunodeficiency virus (HIV) type 1 transframe protein can restore activity to a dimerization-deficient HIV protease variant.
    Dautin N; Karimova G; Ladant D
    J Virol; 2003 Aug; 77(15):8216-26. PubMed ID: 12857890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.