These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 11598128)

  • 21. Enhanced stability of monomer fold correlates with extreme drug resistance of HIV-1 protease.
    Louis JM; Tözsér J; Roche J; Matúz K; Aniana A; Sayer JM
    Biochemistry; 2013 Oct; 52(43):7678-88. PubMed ID: 24079831
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding HIV-1 protease autoprocessing for novel therapeutic development.
    Huang L; Chen C
    Future Med Chem; 2013 Jul; 5(11):1215-29. PubMed ID: 23859204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel P2 tris-tetrahydrofuran group in antiviral compound 1 (GRL-0519) fills the S2 binding pocket of selected mutants of HIV-1 protease.
    Zhang H; Wang YF; Shen CH; Agniswamy J; Rao KV; Xu CX; Ghosh AK; Harrison RW; Weber IT
    J Med Chem; 2013 Feb; 56(3):1074-83. PubMed ID: 23298236
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-resolution structure of a retroviral protease folded as a monomer.
    Gilski M; Kazmierczyk M; Krzywda S; Zábranská H; Cooper S; Popović Z; Khatib F; DiMaio F; Thompson J; Baker D; Pichová I; Jaskolski M
    Acta Crystallogr D Biol Crystallogr; 2011 Nov; 67(Pt 11):907-14. PubMed ID: 22101816
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein intrinsic disorder as a flexible armor and a weapon of HIV-1.
    Xue B; Mizianty MJ; Kurgan L; Uversky VN
    Cell Mol Life Sci; 2012 Apr; 69(8):1211-59. PubMed ID: 22033837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Loss of protease dimerization inhibition activity of darunavir is associated with the acquisition of resistance to darunavir by HIV-1.
    Koh Y; Aoki M; Danish ML; Aoki-Ogata H; Amano M; Das D; Shafer RW; Ghosh AK; Mitsuya H
    J Virol; 2011 Oct; 85(19):10079-89. PubMed ID: 21813613
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple routes and milestones in the folding of HIV-1 protease monomer.
    Bonomi M; Barducci A; Gervasio FL; Parrinello M
    PLoS One; 2010 Oct; 5(10):e13208. PubMed ID: 20967249
    [TBL] [Abstract][Full Text] [Related]  

  • 28. HIV-1 protease has a genetic T-cell adjuvant effect which is negatively regulated by proteolytic activity.
    Kim KS; Jin DB; Ahn SS; Park KS; Seo SH; Suh YS; Sung YC
    J Virol; 2010 Aug; 84(15):7743-9. PubMed ID: 20484507
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly conserved glycine 86 and arginine 87 residues contribute differently to the structure and activity of the mature HIV-1 protease.
    Ishima R; Gong Q; Tie Y; Weber IT; Louis JM
    Proteins; 2010 Mar; 78(4):1015-25. PubMed ID: 19899162
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Revealing the dimer dissociation and existence of a folded monomer of the mature HIV-2 protease.
    Louis JM; Ishima R; Aniana A; Sayer JM
    Protein Sci; 2009 Dec; 18(12):2442-53. PubMed ID: 19798742
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The folding free-energy surface of HIV-1 protease: insights into the thermodynamic basis for resistance to inhibitors.
    Noel AF; Bilsel O; Kundu A; Wu Y; Zitzewitz JA; Matthews CR
    J Mol Biol; 2009 Apr; 387(4):1002-16. PubMed ID: 19150359
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis and characterization of dimerization inhibition of a multi-drug-resistant human immunodeficiency virus type 1 protease using a novel size-exclusion chromatographic approach.
    Davis DA; Tebbs IR; Daniels SI; Stahl SJ; Kaufman JD; Wingfield P; Bowman MJ; Chmielewski J; Yarchoan R
    Biochem J; 2009 Apr; 419(2):497-506. PubMed ID: 19149765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactions of different inhibitors with active-site aspartyl residues of HIV-1 protease and possible relevance to pepsin.
    Sayer JM; Louis JM
    Proteins; 2009 May; 75(3):556-68. PubMed ID: 18951411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel macromolecular inhibitors of human immunodeficiency virus-1 protease.
    Miklóssy G; Tözsér J; Kádas J; Ishima R; Louis JM; Bagossi P
    Protein Eng Des Sel; 2008 Jul; 21(7):453-61. PubMed ID: 18480092
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Atomistic simulations of the HIV-1 protease folding inhibition.
    Verkhivker G; Tiana G; Camilloni C; Provasi D; Broglia RA
    Biophys J; 2008 Jul; 95(2):550-62. PubMed ID: 18375506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of the active site D25N mutation on the structure, stability, and ligand binding of the mature HIV-1 protease.
    Sayer JM; Liu F; Ishima R; Weber IT; Louis JM
    J Biol Chem; 2008 May; 283(19):13459-70. PubMed ID: 18281688
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insight into the folding inhibition of the HIV-1 protease by a small peptide.
    Bonomi M; Gervasio FL; Tiana G; Provasi D; Broglia RA; Parrinello M
    Biophys J; 2007 Oct; 93(8):2813-21. PubMed ID: 17573430
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrophobic sliding: a possible mechanism for drug resistance in human immunodeficiency virus type 1 protease.
    Foulkes-Murzycki JE; Scott WR; Schiffer CA
    Structure; 2007 Feb; 15(2):225-33. PubMed ID: 17292840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HIV-1 protease catalytic efficiency effects caused by random single amino acid substitutions.
    Parera M; Fernàndez G; Clotet B; Martínez MA
    Mol Biol Evol; 2007 Feb; 24(2):382-7. PubMed ID: 17090696
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of HIV-1-PR inhibitors that do not create resistance: blocking the folding of single monomers.
    Broglia RA; Tiana G; Sutto L; Provasi D; Simona F
    Protein Sci; 2005 Oct; 14(10):2668-81. PubMed ID: 16195553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.