BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 11598240)

  • 1. Sulfur economy and cell wall biosynthesis during sulfur limitation of Chlamydomonas reinhardtii.
    Takahashi H; Braby CE; Grossman AR
    Plant Physiol; 2001 Oct; 127(2):665-73. PubMed ID: 11598240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tiered regulation of sulfur deprivation responses in Chlamydomonas reinhardtii and identification of an associated regulatory factor.
    Aksoy M; Pootakham W; Pollock SV; Moseley JL; González-Ballester D; Grossman AR
    Plant Physiol; 2013 May; 162(1):195-211. PubMed ID: 23482872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sac mutants of Chlamydomonas reinhardtii reveal transcriptional and posttranscriptional control of cysteine biosynthesis.
    Ravina CG; Chang CI; Tsakraklides GP; McDermott JP; Vega JM; Leustek T; Gotor C; Davies JP
    Plant Physiol; 2002 Dec; 130(4):2076-84. PubMed ID: 12481091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfur availability and the SAC1 gene control adenosine triphosphate sulfurylase gene expression in Chlamydomonas reinhardtii.
    Yildiz FH; Davies JP; Grossman A
    Plant Physiol; 1996 Oct; 112(2):669-75. PubMed ID: 8883379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 14-3-3 proteins are constituents of the insoluble glycoprotein framework of the chlamydomonas cell wall.
    Voigt J; Frank R
    Plant Cell; 2003 Jun; 15(6):1399-413. PubMed ID: 12782732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical function of a Chlamydomonas reinhardtii putative polyphosphate polymerase subunit during nutrient deprivation.
    Aksoy M; Pootakham W; Grossman AR
    Plant Cell; 2014 Oct; 26(10):4214-29. PubMed ID: 25281687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation.
    Davies JP; Yildiz FH; Grossman A
    EMBO J; 1996 May; 15(9):2150-9. PubMed ID: 8641280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the survival of Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression.
    Zhang Z; Shrager J; Jain M; Chang CW; Vallon O; Grossman AR
    Eukaryot Cell; 2004 Oct; 3(5):1331-48. PubMed ID: 15470261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sac3, an Snf1-like serine/threonine kinase that positively and negatively regulates the responses of Chlamydomonas to sulfur limitation.
    Davies JP; Yildiz FH; Grossman AR
    Plant Cell; 1999 Jun; 11(6):1179-90. PubMed ID: 10368187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and regulation of plasma membrane sulfate transporters in Chlamydomonas.
    Pootakham W; Gonzalez-Ballester D; Grossman AR
    Plant Physiol; 2010 Aug; 153(4):1653-68. PubMed ID: 20498339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and expression of the gene encoding the periplasmic arylsulfatase of Chlamydomonas reinhardtii.
    de Hostos EL; Schilling J; Grossman AR
    Mol Gen Genet; 1989 Aug; 218(2):229-39. PubMed ID: 2476654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cysteine biosynthesis in Chlamydomonas reinhardtii. Molecular cloning and regulation of O-acetylserine(thiol)lyase.
    Ravina CG; Barroso C; Vega JM; Gotor C
    Eur J Biochem; 1999 Sep; 264(3):848-53. PubMed ID: 10491132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival.
    González-Ballester D; Casero D; Cokus S; Pellegrini M; Merchant SS; Grossman AR
    Plant Cell; 2010 Jun; 22(6):2058-84. PubMed ID: 20587772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlamydomonas reinhardtii has multiple prolyl 4-hydroxylases, one of which is essential for proper cell wall assembly.
    Keskiaho K; Hieta R; Sormunen R; Myllyharju J
    Plant Cell; 2007 Jan; 19(1):256-69. PubMed ID: 17220203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell wall biogenesis in Chlamydomonas: molecular characterization of a novel protein whose expression is up-regulated during matrix formation.
    Kurvari V
    Mol Gen Genet; 1997 Nov; 256(5):572-80. PubMed ID: 9413442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The LPB1 gene is important for acclimation of Chlamydomonas reinhardtii to phosphorus and sulfur deprivation.
    Chang CW; Moseley JL; Wykoff D; Grossman AR
    Plant Physiol; 2005 May; 138(1):319-29. PubMed ID: 15849300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of the arylsulfatase gene from the beta 2-tubulin promoter in Chlamydomonas reinhardtii.
    Davies JP; Weeks DP; Grossman AR
    Nucleic Acids Res; 1992 Jun; 20(12):2959-65. PubMed ID: 1620590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-based approaches to understanding phosphorus deprivation responses and PSR1 control in Chlamydomonas reinhardtii.
    Moseley JL; Chang CW; Grossman AR
    Eukaryot Cell; 2006 Jan; 5(1):26-44. PubMed ID: 16400166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chaotrope-soluble glycoprotein GP2 is a precursor of the insoluble glycoprotein framework of the Chlamydomonas cell wall.
    Voigt J; Woestemeyer J; Frank R
    J Biol Chem; 2007 Oct; 282(42):30381-92. PubMed ID: 17673458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characterization of a zygote wall protein: an extensin-like molecule in Chlamydomonas reinhardtii.
    Woessner JP; Goodenough UW
    Plant Cell; 1989 Sep; 1(9):901-11. PubMed ID: 2535530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.