These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 11598511)

  • 1. Development of a system for in vitro neck muscle force replication in whole cervical spine experiments.
    Panjabi MM; Miura T; Cripton PA; Wang JL; Nain AS; DuBois C
    Spine (Phila Pa 1976); 2001 Oct; 26(20):2214-9. PubMed ID: 11598511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relevance of using a compressive preload in the cervical spine: an experimental and numerical simulating investigation.
    Barrey C; Rousseau MA; Persohn S; Campana S; Perrin G; Skalli W
    Eur J Orthop Surg Traumatol; 2015 Jul; 25 Suppl 1():S155-65. PubMed ID: 25845316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method to simulate in vivo cervical spine kinematics using in vitro compressive preload.
    Miura T; Panjabi MM; Cripton PA
    Spine (Phila Pa 1976); 2002 Jan; 27(1):43-8. PubMed ID: 11805634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of varying compressive loading methods on physiologic motion patterns in the cervical spine.
    Bell KM; Yan Y; Debski RE; Sowa GA; Kang JD; Tashman S
    J Biomech; 2016 Jan; 49(2):167-72. PubMed ID: 26708967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple muscle force simulation in axial rotation of the cervical spine.
    Bernhardt P; Wilke HJ; Wenger KH; Jungkunz B; Böhm A; Claes LE
    Clin Biomech (Bristol, Avon); 1999 Jan; 14(1):32-40. PubMed ID: 10619088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Load-carrying capacity of the human cervical spine in compression is increased under a follower load.
    Patwardhan AG; Havey RM; Ghanayem AJ; Diener H; Meade KP; Dunlap B; Hodges SD
    Spine (Phila Pa 1976); 2000 Jun; 25(12):1548-54. PubMed ID: 10851105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves.
    Panjabi MM; Crisco JJ; Vasavada A; Oda T; Cholewicki J; Nibu K; Shin E
    Spine (Phila Pa 1976); 2001 Dec; 26(24):2692-700. PubMed ID: 11740357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multidirectional flexibility analysis of cervical artificial disc reconstruction: in vitro human cadaveric spine model.
    Kotani Y; Cunningham BW; Abumi K; Dmitriev AE; Ito M; Hu N; Shikinami Y; McAfee PC; Minami A
    J Neurosurg Spine; 2005 Feb; 2(2):188-94. PubMed ID: 15739532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of age and injury mechanism on cervical spine injury tolerance from head contact loading.
    Yoganandan N; Chirvi S; Voo L; Pintar FA; Banerjee A
    Traffic Inj Prev; 2018 Feb; 19(2):165-172. PubMed ID: 28738168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of two-level total disc replacement on cervical spine kinematics.
    Phillips FM; Tzermiadianos MN; Voronov LI; Havey RM; Carandang G; Dooris A; Patwardhan AG
    Spine (Phila Pa 1976); 2009 Oct; 34(22):E794-9. PubMed ID: 19829242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematics of the upper cervical spine in rotation: in vivo three-dimensional analysis.
    Ishii T; Mukai Y; Hosono N; Sakaura H; Nakajima Y; Sato Y; Sugamoto K; Yoshikawa H
    Spine (Phila Pa 1976); 2004 Apr; 29(7):E139-44. PubMed ID: 15087810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intradiscal pressure recordings in the cervical spine.
    Pospiech J; Stolke D; Wilke HJ; Claes LE
    Neurosurgery; 1999 Feb; 44(2):379-84; discussion 384-5. PubMed ID: 9932892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressive follower load influences cervical spine kinematics and kinetics during simulated head-first impact in an in vitro model.
    Saari A; Dennison CR; Zhu Q; Nelson TS; Morley P; Oxland TR; Cripton PA; Itshayek E
    J Biomech Eng; 2013 Nov; 135(11):111003. PubMed ID: 23775333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical evaluation of stand-alone interbody fusion cages in the cervical spine.
    Shimamoto N; Cunningham BW; Dmitriev AE; Minami A; McAfee PC
    Spine (Phila Pa 1976); 2001 Oct; 26(19):E432-6. PubMed ID: 11698902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neck motion due to the halo-vest in prone and supine positions.
    Ivancic PC; Telles CJ
    Spine (Phila Pa 1976); 2010 May; 35(10):E400-6. PubMed ID: 20118835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cervical vertebral motions and biomechanical responses to direct loading of human head.
    Ono K; Kaneoka K; Hattori S; Ujihashi S; Takhounts EG; Haffner MP; Eppinger RH
    Traffic Inj Prev; 2003 Jun; 4(2):141-52. PubMed ID: 16210199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intervertebral kinematics of the cervical spine before, during, and after high-velocity low-amplitude manipulation.
    Anderst WJ; Gale T; LeVasseur C; Raj S; Gongaware K; Schneider M
    Spine J; 2018 Dec; 18(12):2333-2342. PubMed ID: 30142458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact responses of the cervical spine: A computational study of the effects of muscle activity, torso constraint, and pre-flexion.
    Nightingale RW; Sganga J; Cutcliffe H; Bass CR
    J Biomech; 2016 Feb; 49(4):558-64. PubMed ID: 26874970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical comparison of single- and two-level cervical arthroplasty versus arthrodesis: effect on adjacent-level spinal kinematics.
    Cunningham BW; Hu N; Zorn CM; McAfee PC
    Spine J; 2010 Apr; 10(4):341-9. PubMed ID: 20362252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional flexibility characteristics of the human cervical spine in vivo.
    McClure P; Siegler S; Nobilini R
    Spine (Phila Pa 1976); 1998 Jan; 23(2):216-23. PubMed ID: 9474729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.