BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 11598876)

  • 1. Global minimization of an off-lattice potential energy function using a chaperone-based refolding method.
    Gorse D
    Biopolymers; 2001 Nov; 59(6):411-26. PubMed ID: 11598876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of a chaperone-based refolding method to two- and three-dimensional off-lattice protein models.
    Gorse D
    Biopolymers; 2002 Jul; 64(3):146-60. PubMed ID: 12012350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of GroEL/GroES folding/refolding of protein substrates revisited.
    Jones H; Preuss M; Wright M; Miller AD
    Org Biomol Chem; 2006 Apr; 4(7):1223-35. PubMed ID: 16557310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaperonin-affected refolding of alpha-lactalbumin: effects of nucleotides and the co-chaperonin GroES.
    Makio T; Arai M; Kuwajima K
    J Mol Biol; 1999 Oct; 293(1):125-37. PubMed ID: 10512721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogel polymer appears to mimic the performance of the GroEL/GroES molecular chaperone machine.
    Jones H; Dalmaris J; Wright M; Steinke JH; Miller AD
    Org Biomol Chem; 2006 Jul; 4(13):2568-74. PubMed ID: 16791320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a molecular chaperone-assisted protein folding bioreactor.
    Kohler RJ; Preuss M; Miller AD
    Biotechnol Prog; 2000; 16(4):671-5. PubMed ID: 10933845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of refolding activities between nanogel artificial chaperone and GroEL systems.
    Asayama W; Sawada S; Taguchi H; Akiyoshi K
    Int J Biol Macromol; 2008 Apr; 42(3):241-6. PubMed ID: 18179818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of substrate recognition by the chaperonin GroEL.
    Houry WA
    Biochem Cell Biol; 2001; 79(5):569-77. PubMed ID: 11716298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring protein conformation along the pathway of chaperonin-assisted folding.
    Sharma S; Chakraborty K; Müller BK; Astola N; Tang YC; Lamb DC; Hayer-Hartl M; Hartl FU
    Cell; 2008 Apr; 133(1):142-53. PubMed ID: 18394994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disulfide formation as a probe of folding in GroEL-GroES reveals correct formation of long-range bonds and editing of incorrect short-range ones.
    Park ES; Fenton WA; Horwich AL
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2145-50. PubMed ID: 17283341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GroEL-GroES-mediated protein folding.
    Horwich AL; Farr GW; Fenton WA
    Chem Rev; 2006 May; 106(5):1917-30. PubMed ID: 16683761
    [No Abstract]   [Full Text] [Related]  

  • 12. Local-structural diversity and protein folding: application to all-beta off-lattice protein models.
    Pan PW; Gordon HL; Rothstein SM
    J Chem Phys; 2006 Jan; 124(2):024905. PubMed ID: 16422646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein.
    Tang YC; Chang HC; Roeben A; Wischnewski D; Wischnewski N; Kerner MJ; Hartl FU; Hayer-Hartl M
    Cell; 2006 Jun; 125(5):903-14. PubMed ID: 16751100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allostery wiring diagrams in the transitions that drive the GroEL reaction cycle.
    Tehver R; Chen J; Thirumalai D
    J Mol Biol; 2009 Mar; 387(2):390-406. PubMed ID: 19121324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Domain-specific chaperone-induced expansion is required for beta-actin folding: a comparison of beta-actin conformations upon interactions with GroEL and tail-less complex polypeptide 1 ring complex (TRiC).
    Villebeck L; Moparthi SB; Lindgren M; Hammarström P; Jonsson BH
    Biochemistry; 2007 Nov; 46(44):12639-47. PubMed ID: 17939680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing dynamics and conformational change of the GroEL-GroES complex by 13C NMR spectroscopy.
    Nishida N; Motojima F; Idota M; Fujikawa H; Yoshida M; Shimada I; Kato K
    J Biochem; 2006 Oct; 140(4):591-8. PubMed ID: 16963786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GroEL walks the fine line: the subtle balance of substrate and co-chaperonin binding by GroEL. A combinatorial investigation by design, selection and screening.
    Kawe M; Plückthun A
    J Mol Biol; 2006 Mar; 357(2):411-26. PubMed ID: 16427651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryo-EM structure of the native GroEL-GroES complex from thermus thermophilus encapsulating substrate inside the cavity.
    Kanno R; Koike-Takeshita A; Yokoyama K; Taguchi H; Mitsuoka K
    Structure; 2009 Feb; 17(2):287-93. PubMed ID: 19217399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple structural transitions of the GroEL subunit are sensitive to intermolecular interactions with cochaperonin and refolding polypeptide.
    Yoshimi T; Hongo K; Mizobata T; Kawata Y
    J Biochem; 2006 Mar; 139(3):407-19. PubMed ID: 16567406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Archaeal group II chaperonin mediates protein folding in the cis-cavity without a detachable GroES-like co-chaperonin.
    Yoshida T; Kawaguchi R; Taguchi H; Yoshida M; Yasunaga T; Wakabayashi T; Yohda M; Maruyama T
    J Mol Biol; 2002 Jan; 315(1):73-85. PubMed ID: 11771967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.