BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 11599938)

  • 1. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds.
    Pattison DI; Davies MJ
    Chem Res Toxicol; 2001 Oct; 14(10):1453-64. PubMed ID: 11599938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of the role of histidine chloramines in hypochlorous acid mediated protein oxidation.
    Pattison DI; Davies MJ
    Biochemistry; 2005 May; 44(19):7378-87. PubMed ID: 15882077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypochlorous acid-mediated oxidation of lipid components and antioxidants present in low-density lipoproteins: absolute rate constants, product analysis, and computational modeling.
    Pattison DI; Hawkins CL; Davies MJ
    Chem Res Toxicol; 2003 Apr; 16(4):439-49. PubMed ID: 12703960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic analysis of the reactions of hypobromous acid with protein components: implications for cellular damage and use of 3-bromotyrosine as a marker of oxidative stress.
    Pattison DI; Davies MJ
    Biochemistry; 2004 Apr; 43(16):4799-809. PubMed ID: 15096049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypochlorous acid-mediated protein oxidation: how important are chloramine transfer reactions and protein tertiary structure?
    Pattison DI; Hawkins CL; Davies MJ
    Biochemistry; 2007 Aug; 46(34):9853-64. PubMed ID: 17676767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reevaluation of the rate constants for the reaction of hypochlorous acid (HOCl) with cysteine, methionine, and peptide derivatives using a new competition kinetic approach.
    Storkey C; Davies MJ; Pattison DI
    Free Radic Biol Med; 2014 Aug; 73():60-6. PubMed ID: 24794410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What are the plasma targets of the oxidant hypochlorous acid? A kinetic modeling approach.
    Pattison DI; Hawkins CL; Davies MJ
    Chem Res Toxicol; 2009 May; 22(5):807-17. PubMed ID: 19326902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypochlorite-induced oxidation of amino acids, peptides and proteins.
    Hawkins CL; Pattison DI; Davies MJ
    Amino Acids; 2003 Dec; 25(3-4):259-74. PubMed ID: 14661089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of disulfide (cystine) oxidation by HOCl in a model peptide: Evidence for oxygen addition, disulfide bond cleavage and adduct formation with thiols.
    Karimi M; Crossett B; Cordwell SJ; Pattison DI; Davies MJ
    Free Radic Biol Med; 2020 Jul; 154():62-74. PubMed ID: 32370994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypochlorous acid-mediated modification of proteins and its consequences.
    Hawkins CL
    Essays Biochem; 2020 Feb; 64(1):75-86. PubMed ID: 31867603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of heparan sulphate by hypochlorite: role of N-chloro derivatives and dichloramine-dependent fragmentation.
    Rees MD; Pattison DI; Davies MJ
    Biochem J; 2005 Oct; 391(Pt 1):125-34. PubMed ID: 15932347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction kinetics of selenium-containing compounds with oxidants.
    Carroll L; Gardiner K; Ignasiak M; Holmehave J; Shimodaira S; Breitenbach T; Iwaoka M; Ogilby PR; Pattison DI; Davies MJ
    Free Radic Biol Med; 2020 Aug; 155():58-68. PubMed ID: 32439383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preventing protein oxidation with sugars: scavenging of hypohalous acids by 5-selenopyranose and 4-selenofuranose derivatives.
    Storkey C; Pattison DI; White JM; Schiesser CH; Davies MJ
    Chem Res Toxicol; 2012 Nov; 25(11):2589-99. PubMed ID: 23075063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypochlorite-induced damage to proteins: formation of nitrogen-centred radicals from lysine residues and their role in protein fragmentation.
    Hawkins CL; Davies MJ
    Biochem J; 1998 Jun; 332 ( Pt 3)(Pt 3):617-25. PubMed ID: 9620862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myeloperoxidase-derived oxidants rapidly oxidize and disrupt zinc-cysteine/histidine clusters in proteins.
    Cook NL; Pattison DI; Davies MJ
    Free Radic Biol Med; 2012 Dec; 53(11):2072-80. PubMed ID: 23032100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selenium-containing indolyl compounds: Kinetics of reaction with inflammation-associated oxidants and protective effect against oxidation of extracellular matrix proteins.
    Casaril AM; Ignasiak MT; Chuang CY; Vieira B; Padilha NB; Carroll L; Lenardão EJ; Savegnago L; Davies MJ
    Free Radic Biol Med; 2017 Dec; 113():395-405. PubMed ID: 29055824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of intramolecular and intermolecular sulfenamides, sulfinamides, and sulfonamides by hypochlorous acid: a potential pathway for oxidative cross-linking of low-density lipoprotein by myeloperoxidase.
    Fu X; Mueller DM; Heinecke JW
    Biochemistry; 2002 Jan; 41(4):1293-301. PubMed ID: 11802729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near diffusion-controlled reaction of a Zn(Cys)
    Lebrun V; Ravanat JL; Latour JM; Sénèque O
    Chem Sci; 2016 Aug; 7(8):5508-5516. PubMed ID: 30034691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive sulfur species: kinetics and mechanism of the oxidation of cystine by hypochlorous acid to give N,N'-dichlorocystine.
    Nagy P; Ashby MT
    Chem Res Toxicol; 2005 Jun; 18(6):919-23. PubMed ID: 15962926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of protease inhibitors and lysozyme by hypochlorous acid: role of side-chain oxidation and protein unfolding in loss of biological function.
    Hawkins CL; Davies MJ
    Chem Res Toxicol; 2005 Oct; 18(10):1600-10. PubMed ID: 16533025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.