These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 11600015)

  • 21. Response of Fusarium thapsinum to Sorghum brown midrib Lines and to Phenolic Metabolites.
    Funnell-Harris DL; Sattler SE; Pedersen JF
    Plant Dis; 2014 Oct; 98(10):1300-1308. PubMed ID: 30703939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Partial characterization of tannin-protein complexes in five varieties of grain sorghum by automated gel filtration chromatography.
    Fishman ML; Neucere NJ
    J Agric Food Chem; 1980; 28(2):477-80. PubMed ID: 7391386
    [No Abstract]   [Full Text] [Related]  

  • 23. Transcriptome dynamics of a susceptible wheat upon Fusarium head blight reveals that molecular responses to Fusarium graminearum infection fit over the grain development processes.
    Chetouhi C; Bonhomme L; Lasserre-Zuber P; Cambon F; Pelletier S; Renou JP; Langin T
    Funct Integr Genomics; 2016 Mar; 16(2):183-201. PubMed ID: 26797431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of waxy (Low Amylose) on Fungal Infection of Sorghum Grain.
    Funnell-Harris DL; Sattler SE; O'Neill PM; Eskridge KM; Pedersen JF
    Phytopathology; 2015 Jun; 105(6):786-96. PubMed ID: 25626075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterologous expression of new antifungal chitinase from wheat.
    Singh A; Kirubakaran SI; Sakthivel N
    Protein Expr Purif; 2007 Nov; 56(1):100-9. PubMed ID: 17697785
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phenolics in maize genotypes differing in susceptibility to Gibberella stalk rot (Fusarium graminearum Schwabe).
    Santiago R; Reid LM; Arnason JT; Zhu X; Martinez N; Malvar RA
    J Agric Food Chem; 2007 Jun; 55(13):5186-93. PubMed ID: 17547419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prospects for reducing fumonisin contamination of maize through genetic modification.
    Duvick J
    Environ Health Perspect; 2001 May; 109 Suppl 2(Suppl 2):337-42. PubMed ID: 11359705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toxigenicity of fungi from grain sorghum.
    Diener UL; Morgan-Jones G; Wagener RE; Davis ND
    Mycopathologia; 1981 Jul; 75(1):23-6. PubMed ID: 7196500
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of the storage time and temperature on phenolic compounds of sorghum grain and flour.
    Oliveira KG; Queiroz VA; Carlos Lde A; Cardoso Lde M; Pinheiro-Sant'Ana HM; Anunciação PC; Menezes CB; Silva EC; Barros F
    Food Chem; 2017 Feb; 216():390-8. PubMed ID: 27596435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation and characterization of antimicrobial cyclic dipeptides from Pseudomonas fluorescens and their efficacy on sorghum grain mold fungi.
    Sajeli Begum A; Basha SA; Raghavendra G; Kumar MV; Singh Y; Patil JV; Tanemura Y; Fujimoto Y
    Chem Biodivers; 2014 Jan; 11(1):92-100. PubMed ID: 24443429
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Response of Sorghum Enhanced in Monolignol Biosynthesis to Stalk Rot Pathogens.
    Funnell-Harris DL; Sattler SE; O'Neill PM; Gries T; Tetreault HM; Clemente TE
    Plant Dis; 2019 Sep; 103(9):2277-2287. PubMed ID: 31215851
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Association of Plant Color and Pericarp Color with Colonization of Grain by Members of Fusarium and Alternaria in Near-Isogenic Sorghum Lines.
    Funnell DL; Pedersen JF
    Plant Dis; 2006 Apr; 90(4):411-418. PubMed ID: 30786586
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antifungal metabolites (monorden, monocillins I, II, III) from Colletotrichum graminicola, a systemic vascular pathogen of maize.
    Wicklow DT; Jordan AM; Gloer JB
    Mycol Res; 2009 Dec; 113(Pt 12):1433-42. PubMed ID: 19825415
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differences in Fusarium Species in brown midrib Sorghum and in Air Populations in Production Fields.
    Funnell-Harris DL; Scully ED; Sattler SE; French RC; O'Neill PM; Pedersen JF
    Phytopathology; 2017 Nov; 107(11):1353-1363. PubMed ID: 28686087
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Susceptibility of Maize to Stalk Rot Caused by Fusarium graminearum Deoxynivalenol and Zearalenone Mutants.
    Quesada-Ocampo LM; Al-Haddad J; Scruggs AC; Buell CR; Trail F
    Phytopathology; 2016 Aug; 106(8):920-7. PubMed ID: 27050573
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Indirect selection for resistance to ear rot and leaf diseases in maize lines using biplots.
    Pereira GS; Camargos RB; Balestre M; Von Pinho RG; C Melo WM
    Genet Mol Res; 2015 Sep; 14(3):11052-62. PubMed ID: 26400335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of Altering Three Steps of Monolignol Biosynthesis on Sorghum Responses to Stalk Pathogens and Water Deficit.
    Funnell-Harris DL; Sattler SE; O'Neill PM; Gries T; Ge Z; Nersesian N
    Plant Dis; 2023 Dec; 107(12):3984-3995. PubMed ID: 37430480
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phenolic acids in cereal grain: Occurrence, biosynthesis, metabolism and role in living organisms.
    Stuper-Szablewska K; Perkowski J
    Crit Rev Food Sci Nutr; 2019; 59(4):664-675. PubMed ID: 28976227
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A small molecule species specifically inhibits Fusarium myosin I.
    Zhang C; Chen Y; Yin Y; Ji HH; Shim WB; Hou Y; Zhou M; Li XD; Ma Z
    Environ Microbiol; 2015 Aug; 17(8):2735-46. PubMed ID: 25404531
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cloning and overexpression of antifungal barley chitinase gene in Escherichia coli.
    Kirubakaran SI; Sakthivel N
    Protein Expr Purif; 2007 Mar; 52(1):159-66. PubMed ID: 17029984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.