These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
373 related articles for article (PubMed ID: 11600342)
1. Nitrogen availability modifies the ozone responses of Scots pine seedlings exposed in an open-field system. Utriainen J; Holopainen T Tree Physiol; 2001 Oct; 21(16):1205-13. PubMed ID: 11600342 [TBL] [Abstract][Full Text] [Related]
2. Influence of nitrogen and phosphorous availability and ozone stress on Norway spruce seedlings. Utriainen J; Holopainen T Tree Physiol; 2001 May; 21(7):447-56. PubMed ID: 11340045 [TBL] [Abstract][Full Text] [Related]
3. Soil nitrogen and chronic ozone stress influence physiology, growth and nutrient status of Pinus taeda L. and Liriodendron tulipifera L. seedlings. Tjoelker MG; Luxmoore RJ New Phytol; 1991 Sep; 119(1):69-81. PubMed ID: 33874340 [TBL] [Abstract][Full Text] [Related]
4. Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season. Domisch T; Finér L; Lehto T Tree Physiol; 2001 May; 21(7):465-72. PubMed ID: 11340047 [TBL] [Abstract][Full Text] [Related]
5. Interactive effects of CO2 and O3 on a ponderosa pine plant/litter/soil mesocosm. Olszyk DM; Johnson MG; Phillips DL; Seidler RJ; Tingey DT; Watrud LS Environ Pollut; 2001; 115(3):447-62. PubMed ID: 11789925 [TBL] [Abstract][Full Text] [Related]
6. Contrasting effects of elevated carbon dioxide concentration and temperature on Rubisco activity, chlorophyll fluorescence, needle ultrastructure and secondary metabolites in conifer seedlings. Sallas L; Luomala EM; Ultriainen J; Kainulainen P; Holopainen JK Tree Physiol; 2003 Feb; 23(2):97-108. PubMed ID: 12533304 [TBL] [Abstract][Full Text] [Related]
7. Carbon assimilation and nitrogen in needles of fertilized and unfertilized field-grown Scots pine at natural and elevated concentrations of CO2. Laitinen K; Luomala EM; Kellomäki S; Vapaavuori E Tree Physiol; 2000 Jul; 20(13):881-92. PubMed ID: 11303578 [TBL] [Abstract][Full Text] [Related]
8. Physiological responses of birch (Betula pendula) to ozone: a comparison between open-soil-grown trees exposed for six growing seasons and potted seedlings exposed for one season. Oksanen E Tree Physiol; 2003 Jun; 23(9):603-14. PubMed ID: 12750053 [TBL] [Abstract][Full Text] [Related]
9. Impact of experimentally elevated ozone on seed germination and growth of Russian pine (Pinus sylvestris) and spruce (Picea spp.) provenances. Prozherina N; Nakvasina E; Oksanen E Ambio; 2009 Dec; 38(8):443-7. PubMed ID: 20175444 [TBL] [Abstract][Full Text] [Related]
10. Blue wild-rye grass competition increases the effect of ozone on ponderosa pine seedlings. Andersen CP; Hogsett WE; Plocher M; Rodecap K; Lee EH Tree Physiol; 2001 Mar; 21(5):319-27. PubMed ID: 11262923 [TBL] [Abstract][Full Text] [Related]
11. [Effects of elevated CO2 or/and O3 on growth and daily changes of photosynthesis in leaves of Pinus armandi]. Wang LL; He XY; Chen W Huan Jing Ke Xue; 2010 Jan; 31(1):36-40. PubMed ID: 20329513 [TBL] [Abstract][Full Text] [Related]
12. Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone. Riikonen J; Lindsberg MM; Holopainen T; Oksanen E; Lappi J; Peltonen P; Vapaavuori E Tree Physiol; 2004 Nov; 24(11):1227-37. PubMed ID: 15339732 [TBL] [Abstract][Full Text] [Related]
13. Impact of increased springtime O3 exposure on Scots pine (Pinus sylvestris) seedlings in central Finland. Utriainen J; Holopainen T Environ Pollut; 2000 Sep; 109(3):479-87. PubMed ID: 15092881 [TBL] [Abstract][Full Text] [Related]
14. The influence of elevated CO Kainulainen P; Holopainen JK; Holopainen T Oecologia; 1998 May; 114(4):455-460. PubMed ID: 28307894 [TBL] [Abstract][Full Text] [Related]
15. Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization. Maier CA; Johnsen KH; Butnor J; Kress LW; Anderson PH Tree Physiol; 2002 Nov; 22(15-16):1093-106. PubMed ID: 12414369 [TBL] [Abstract][Full Text] [Related]
16. Seasonal changes in root and soil respiration of ozone-exposed ponderosa pine (Pinus ponderosa) grown in different substrates. Scagel CF; Andersen CP New Phytol; 1997 Aug; 136(4):627-643. PubMed ID: 33863111 [TBL] [Abstract][Full Text] [Related]
17. Effects of elevated carbon dioxide concentration and temperature on needle growth, respiration and carbohydrate status in field-grown Scots pines during the needle expansion period. Zha T; Ryyppö A; Wang KY; Kellomäki S Tree Physiol; 2001 Nov; 21(17):1279-87. PubMed ID: 11696415 [TBL] [Abstract][Full Text] [Related]
18. Functional responses of two Mediterranean pine species in an ozone Free-Air Controlled Exposure (FACE) experiment. Hoshika Y; Cotrozzi L; Gavrichkova O; Nali C; Pellegrini E; Scartazza A; Paoletti E Tree Physiol; 2023 Sep; 43(9):1548-1561. PubMed ID: 37209141 [TBL] [Abstract][Full Text] [Related]
19. Seasonal variation in nitrogen net uptake and root plasma membrane H+-ATPase activity of Scots pine seedlings as affected by nutrient availability. Iivonen S; Vapaavuori E Tree Physiol; 2002 Jan; 22(1):1-10. PubMed ID: 11772550 [TBL] [Abstract][Full Text] [Related]
20. Cell structural changes in the mesophyll of Norway spruce needles by elevated ozone and elevated temperature in open-field exposure during cold acclimation. Kivimäenpää M; Riikonen J; Sutinen S; Holopainen T Tree Physiol; 2014 Apr; 34(4):389-403. PubMed ID: 24718738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]