These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11600493)

  • 1. Expression of Trp3 determines sensitivity of capacitative Ca2+ entry to nitric oxide and mitochondrial Ca2+ handling: evidence for a role of Trp3 as a subunit of capacitative Ca2+ entry channels.
    Thyagarajan B; Poteser M; Romanin C; Kahr H; Zhu MX; Groschner K
    J Biol Chem; 2001 Dec; 276(51):48149-58. PubMed ID: 11600493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide inhibits capacitative Ca2+ entry by suppression of mitochondrial Ca2+ handling.
    Thyagarajan B; Malli R; Schmidt K; Graier WF; Groschner K
    Br J Pharmacol; 2002 Nov; 137(6):821-30. PubMed ID: 12411413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular pH modifies mitochondrial control of capacitative calcium entry in Jurkat cells.
    Zabłocki K; Szczepanowska J; Duszyński J
    J Biol Chem; 2005 Feb; 280(5):3516-21. PubMed ID: 15569668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and Ca2+-sensitive cation channels.
    Lintschinger B; Balzer-Geldsetzer M; Baskaran T; Graier WF; Romanin C; Zhu MX; Groschner K
    J Biol Chem; 2000 Sep; 275(36):27799-805. PubMed ID: 10882720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Receptor-activated Ca2+ influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells. Evidence for a non-capacitative Ca2+ entry.
    Zhu X; Jiang M; Birnbaumer L
    J Biol Chem; 1998 Jan; 273(1):133-42. PubMed ID: 9417057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ether lipid ET-18-OCH3 increases cytosolic Ca2+ concentrations in Madin Darby canine kidney cells.
    Jan CR; Wu SN; Tseng CJ
    Br J Pharmacol; 1999 Jul; 127(6):1502-10. PubMed ID: 10455302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cloning and characterization of rat trp homologues from brain.
    Mizuno N; Kitayama S; Saishin Y; Shimada S; Morita K; Mitsuhata C; Kurihara H; Dohi T
    Brain Res Mol Brain Res; 1999 Jan; 64(1):41-51. PubMed ID: 9889314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of rise and decay of thapsigargin-evoked calcium signals in MDCK cells.
    Jan CR; Ho CM; Wu SN; Tseng CJ
    Life Sci; 1999; 64(4):259-67. PubMed ID: 10027760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human Trp3 forms both inositol trisphosphate receptor-dependent and receptor-independent store-operated cation channels in DT40 avian B lymphocytes.
    Vazquez G; Lievremont JP; St J Bird G; Putney JW
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11777-82. PubMed ID: 11553786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence on the operation of ATP-induced capacitative calcium entry in breast cancer cells and its blockade by 17beta-estradiol.
    Rossi AM; Picotto G; de Boland AR; Boland RL
    J Cell Biochem; 2002; 87(3):324-33. PubMed ID: 12397614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic interaction of hTRPC6 with the Orai1-STIM1 complex or hTRPC3 mediates its role in capacitative or non-capacitative Ca(2+) entry pathways.
    Jardin I; Gómez LJ; Salido GM; Rosado JA
    Biochem J; 2009 May; 420(2):267-76. PubMed ID: 19260825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TRPC4 expression determines sensitivity of the platelet-type capacitative Ca2+ entry channel to intracellular alkalosis.
    Wakabayashi I; Marumo M; Graziani A; Poteser M; Groschner K
    Platelets; 2006 Nov; 17(7):454-61. PubMed ID: 17074721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epidermal growth factor-induced depletion of the intracellular Ca2+ store fails to activate capacitative Ca2+ entry in a human salivary cell line.
    Zhang BX; Ma X; Yeh CK; Lifschitz MD; Zhu MX; Katz MS
    J Biol Chem; 2002 Dec; 277(50):48165-71. PubMed ID: 12368284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial regulation of store-operated calcium signaling in T lymphocytes.
    Hoth M; Fanger CM; Lewis RS
    J Cell Biol; 1997 May; 137(3):633-48. PubMed ID: 9151670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Nitric oxide as a possible regulator of energy-dependent Ca2+ transport in mitochondria of uterine smooth muscle].
    Danylovych IuV; Kolomiiets' OV; Danylovych HV; Kosterin SO
    Fiziol Zh (1994); 2014; 60(2):12-7. PubMed ID: 25007515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of Ca(2+)-activated Cl- currents in rabbit portal vein smooth muscle by an inhibitor of mitochondrial Ca2+ uptake.
    Greenwood IA; Helliwell RM; Large WA
    J Physiol; 1997 Nov; 505 ( Pt 1)(Pt 1):53-64. PubMed ID: 9409471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emptying of intracellular Ca2+ stores stimulates Ca2+ entry in mouse pancreatic beta-cells by both direct and indirect mechanisms.
    Miura Y; Henquin JC; Gilon P
    J Physiol; 1997 Sep; 503 ( Pt 2)(Pt 2):387-98. PubMed ID: 9306280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arachidonic acid regulates two Ca2+ entry pathways via nitric oxide.
    Watson EL; Jacobson KL; Singh JC; DiJulio DH
    Cell Signal; 2004 Feb; 16(2):157-65. PubMed ID: 14636886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of extracellular pH on receptor-mediated Ca2+ influx in A7r5 rat smooth muscle cells: involvement of two different types of channel.
    Iwasawa K; Nakajima T; Hazama H; Goto A; Shin WS; Toyo-oka T; Omata M
    J Physiol; 1997 Sep; 503 ( Pt 2)(Pt 2):237-51. PubMed ID: 9306269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a 1,25(OH)2-vitamin D3-responsive capacitative Ca2+ entry pathway in rat osteoblast-like cells.
    Baldi C; Vazquez G; Boland R
    J Cell Biochem; 2002; 86(4):678-87. PubMed ID: 12210734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.