These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 11600648)

  • 21. Lack of respiratory coupling with neocortical and hippocampal slow oscillations.
    Viczko J; Sharma AV; Pagliardini S; Wolansky T; Dickson CT
    J Neurosci; 2014 Mar; 34(11):3937-46. PubMed ID: 24623771
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neocortical inhibitory activities and long-range afferents contribute to the synchronous onset of silent states of the neocortical slow oscillation.
    Lemieux M; Chauvette S; Timofeev I
    J Neurophysiol; 2015 Feb; 113(3):768-79. PubMed ID: 25392176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neuronal and glial membrane potentials during sleep and paroxysmal oscillations in the neocortex.
    Amzica F; Steriade M
    J Neurosci; 2000 Sep; 20(17):6648-65. PubMed ID: 10964970
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Callosal responses of fast-rhythmic-bursting neurons during slow oscillation in cats.
    Cissé Y; Nita DA; Steriade M; Timofeev I
    Neuroscience; 2007 Jun; 147(2):272-6. PubMed ID: 17524564
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans.
    Clemens Z; Mölle M; Eross L; Barsi P; Halász P; Born J
    Brain; 2007 Nov; 130(Pt 11):2868-78. PubMed ID: 17615093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rhythmic intrinsic bursting neurons in human neocortex obtained from pediatric patients with epilepsy.
    Tryba AK; Kaczorowski CC; Ben-Mabrouk F; Elsen FP; Lew SM; Marcuccilli CJ
    Eur J Neurosci; 2011 Jul; 34(1):31-44. PubMed ID: 21722205
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A distinct class of slow (~0.2-2 Hz) intrinsically bursting layer 5 pyramidal neurons determines UP/DOWN state dynamics in the neocortex.
    Lőrincz ML; Gunner D; Bao Y; Connelly WM; Isaac JT; Hughes SW; Crunelli V
    J Neurosci; 2015 Apr; 35(14):5442-58. PubMed ID: 25855163
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hippocampal sharp wave-ripples linked to slow oscillations in rat slow-wave sleep.
    Mölle M; Yeshenko O; Marshall L; Sara SJ; Born J
    J Neurophysiol; 2006 Jul; 96(1):62-70. PubMed ID: 16611848
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synaptic responsiveness of neocortical neurons to callosal volleys during paroxysmal depolarizing shifts.
    Cissé Y; Crochet S; Timofeev I; Steriade M
    Neuroscience; 2004; 124(1):231-9. PubMed ID: 14960354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Slow-wave sleep and the consolidation of long-term memory.
    Born J
    World J Biol Psychiatry; 2010 Jun; 11 Suppl 1():16-21. PubMed ID: 20509828
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats.
    Timofeev I; Steriade M
    J Neurophysiol; 1996 Dec; 76(6):4152-68. PubMed ID: 8985908
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of intrinsic properties and synaptic factors on the activity of neocortical networks in vivo.
    Timofeev I; Grenier F; Steriade M
    J Physiol Paris; 2000; 94(5-6):343-55. PubMed ID: 11165905
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia.
    Soltesz I; Deschênes M
    J Neurophysiol; 1993 Jul; 70(1):97-116. PubMed ID: 8395591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular and network mechanisms of rhythmic recurrent activity in neocortex.
    Sanchez-Vives MV; McCormick DA
    Nat Neurosci; 2000 Oct; 3(10):1027-34. PubMed ID: 11017176
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave oscillations [corrected].
    Volgushev M; Chauvette S; Mukovski M; Timofeev I
    J Neurosci; 2006 May; 26(21):5665-72. PubMed ID: 16723523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrophysiological properties of intralaminar thalamocortical cells discharging rhythmic (approximately 40 HZ) spike-bursts at approximately 1000 HZ during waking and rapid eye movement sleep.
    Steriade M; Curró Dossi R; Contreras D
    Neuroscience; 1993 Sep; 56(1):1-9. PubMed ID: 8232908
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast burst firing and short-term synaptic plasticity: a model of neocortical chattering neurons.
    Wang XJ
    Neuroscience; 1999 Mar; 89(2):347-62. PubMed ID: 10077318
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats.
    Mölle M; Eschenko O; Gais S; Sara SJ; Born J
    Eur J Neurosci; 2009 Mar; 29(5):1071-81. PubMed ID: 19245368
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic coupling among neocortical neurons during evoked and spontaneous spike-wave seizure activity.
    Steriade M; Amzica F
    J Neurophysiol; 1994 Nov; 72(5):2051-69. PubMed ID: 7884444
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Consistent sequential activity across diverse forms of UP states under ketamine anesthesia.
    Luczak A; Barthó P
    Eur J Neurosci; 2012 Sep; 36(6):2830-8. PubMed ID: 22759065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.