These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 11600648)

  • 61. Ketamine-xylazine-induced slow (< 1.5 Hz) oscillations in the rat piriform (olfactory) cortex are functionally correlated with respiration.
    Fontanini A; Spano P; Bower JM
    J Neurosci; 2003 Sep; 23(22):7993-8001. PubMed ID: 12954860
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Potentiation of ketamine effects on the spiking activity in the lateral geniculate nucleus by rapid eye movement (REM) sleep deprivation.
    Susic V
    Arch Int Physiol Biochim; 1976 Apr; 84(2):229-34. PubMed ID: 71026
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Selective amplification of neocortical neuronal output by fast prepotentials in vivo.
    Crochet S; Fuentealba P; Timofeev I; Steriade M
    Cereb Cortex; 2004 Oct; 14(10):1110-21. PubMed ID: 15115743
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Membrane capacitance of cortical neurons and glia during sleep oscillations and spike-wave seizures.
    Amzica F; Neckelmann D
    J Neurophysiol; 1999 Nov; 82(5):2731-46. PubMed ID: 10561441
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Physiology of sleep and wakefulness as it relates to the physiology of epilepsy.
    Amzica F
    J Clin Neurophysiol; 2002 Dec; 19(6):488-503. PubMed ID: 12488780
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The effect of ketamine/xylazine anesthesia on sensory and motor evoked potentials in the rat.
    Zandieh S; Hopf R; Redl H; Schlag MG
    Spinal Cord; 2003 Jan; 41(1):16-22. PubMed ID: 12494316
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Stereotypical spatiotemporal activity patterns during slow-wave activity in the neocortex.
    Fucke T; Suchanek D; Nawrot MP; Seamari Y; Heck DH; Aertsen A; Boucsein C
    J Neurophysiol; 2011 Dec; 106(6):3035-44. PubMed ID: 21849616
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep.
    Staresina BP; Bergmann TO; Bonnefond M; van der Meij R; Jensen O; Deuker L; Elger CE; Axmacher N; Fell J
    Nat Neurosci; 2015 Nov; 18(11):1679-1686. PubMed ID: 26389842
    [TBL] [Abstract][Full Text] [Related]  

  • 69. NREM sleep in the rodent neocortex and hippocampus reflects excitable dynamics.
    Levenstein D; Buzsáki G; Rinzel J
    Nat Commun; 2019 Jun; 10(1):2478. PubMed ID: 31171779
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The thalamic low-threshold Ca²⁺ potential: a key determinant of the local and global dynamics of the slow (<1 Hz) sleep oscillation in thalamocortical networks.
    Crunelli V; Errington AC; Hughes SW; Tóth TI
    Philos Trans A Math Phys Eng Sci; 2011 Oct; 369(1952):3820-39. PubMed ID: 21893530
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Selective coupling between theta phase and neocortical fast gamma oscillations during REM-sleep in mice.
    Scheffzük C; Kukushka VI; Vyssotski AL; Draguhn A; Tort AB; Brankačk J
    PLoS One; 2011; 6(12):e28489. PubMed ID: 22163023
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Large-Scale 3-5 Hz Oscillation Constrains the Expression of Neocortical Fast Ripples in a Mouse Model of Mesial Temporal Lobe Epilepsy.
    Sheybani L; van Mierlo P; Birot G; Michel CM; Quairiaux C
    eNeuro; 2019; 6(1):. PubMed ID: 30783615
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Origin of active states in local neocortical networks during slow sleep oscillation.
    Chauvette S; Volgushev M; Timofeev I
    Cereb Cortex; 2010 Nov; 20(11):2660-74. PubMed ID: 20200108
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Changes in neuronal conductance during different components of cortically generated spike-wave seizures.
    Neckelmann D; Amzica F; Steriade M
    Neuroscience; 2000; 96(3):475-85. PubMed ID: 10717428
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Spontaneous slow wave oscillations in extracellular field potential recordings reflect the alternating dominance of excitation and inhibition.
    Zheng Y; Kang S; O'Neill J; Bojak I
    J Physiol; 2024 Feb; 602(4):713-736. PubMed ID: 38294945
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Network mechanisms for fast ripple activity in epileptic tissue.
    Köhling R; Staley K
    Epilepsy Res; 2011 Dec; 97(3):318-23. PubMed ID: 21470826
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Slow and fast (gamma) neuronal oscillations in the perirhinal cortex and lateral amygdala.
    Collins DR; Pelletier JG; Paré D
    J Neurophysiol; 2001 Apr; 85(4):1661-72. PubMed ID: 11287489
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Neocortical networks entrain neuronal circuits in cerebellar cortex.
    Ros H; Sachdev RN; Yu Y; Sestan N; McCormick DA
    J Neurosci; 2009 Aug; 29(33):10309-20. PubMed ID: 19692605
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cellular-synaptic generation of sleep spindles, spike-and-wave discharges, and evoked thalamocortical responses in the neocortex of the rat.
    Kandel A; Buzsáki G
    J Neurosci; 1997 Sep; 17(17):6783-97. PubMed ID: 9254689
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Why do we sleep?
    Sejnowski TJ; Destexhe A
    Brain Res; 2000 Dec; 886(1-2):208-223. PubMed ID: 11119697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.