BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 11601607)

  • 1. A system of categorizing enzyme-cell wall associations in Agaricus bisporus, using operational criteria.
    Sassoon J; Mooibroek H
    Appl Microbiol Biotechnol; 2001 Sep; 56(5-6):613-22. PubMed ID: 11601607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell wall-associated enzymes in fungi.
    Rast DM; Baumgartner D; Mayer C; Hollenstein GO
    Phytochemistry; 2003 Sep; 64(2):339-66. PubMed ID: 12943752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of Cell Wall Degrading Enzymes and their Encoding Genes in Button Mushrooms (Agaricus bisporus) by CaCl
    Khan ZU; Jiayin L; Khan NM; Mou W; Li D; Wang Y; Feng S; Luo Z; Mao L; Ying T
    Plant Foods Hum Nutr; 2017 Mar; 72(1):54-59. PubMed ID: 27924413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chitinase production during interaction of Trichoderma aggressivum and Agaricus bisporus.
    Guthrie JL; Castle AJ
    Can J Microbiol; 2006 Oct; 52(10):961-7. PubMed ID: 17110964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-N-acetylhexosaminidase: a target for the design of antifungal agents.
    Horsch M; Mayer C; Sennhauser U; Rast DM
    Pharmacol Ther; 1997; 76(1-3):187-218. PubMed ID: 9535180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence and function of enzymes for lignocellulose degradation in commercial Agaricus bisporus cultivation.
    Kabel MA; Jurak E; Mäkelä MR; de Vries RP
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4363-4369. PubMed ID: 28466110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of three genes encoding cell-wall-degrading enzymes of Trichoderma aggressivum during interaction with Agaricus bisporus.
    Abubaker KS; Sjaarda C; Castle AJ
    Can J Microbiol; 2013 Jun; 59(6):417-24. PubMed ID: 23750957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity of native hydrolytic enzymes and their association with the cell wall of three ectomycorrhizal fungi.
    Pérez-de-Mora A; Reuter B; Lucio M; Ahne A; Schloter M; Pritsch K
    Mycorrhiza; 2013 Apr; 23(3):185-97. PubMed ID: 23053575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of glutamine synthetase from the white button mushroom Agaricus bisporus.
    Kersten MA; Baars JJ; Op den Camp HJ; Van Griensven LJ; van der Drift C
    Arch Biochem Biophys; 1999 Apr; 364(2):228-34. PubMed ID: 10190978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving selenium extraction by sequential enzymatic processes for Se-speciation of selenium-enriched Agaricus bisporus.
    Dernovics M; Stefánka Z; Fodor P
    Anal Bioanal Chem; 2002 Feb; 372(3):473-80. PubMed ID: 11939536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta-glucosidase excretion in Trichoderma strains with different cell wall bound beta-1,3-glucanase activities.
    Kubicek CP
    Can J Microbiol; 1983 Feb; 29(2):163-9. PubMed ID: 6406022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cell walls of Agaricus bisporus and Agaricus campestris fruiting body hyphae.
    Novaes-Ledieu M; Garcia Mendoza C
    Can J Microbiol; 1981 Aug; 27(8):779-87. PubMed ID: 7197579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compost Grown Agaricus bisporus Lacks the Ability to Degrade and Consume Highly Substituted Xylan Fragments.
    Jurak E; Patyshakuliyeva A; de Vries RP; Gruppen H; Kabel MA
    PLoS One; 2015; 10(8):e0134169. PubMed ID: 26237450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production and detection of muramidase and acetylglucosaminidase from Agaricus bisporus.
    Lincoln SP; Fermor TR; Wood DA
    Lett Appl Microbiol; 1997 Jul; 25(1):24-9. PubMed ID: 9248076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and active site analysis of the 1-aminocyclopropane-1-carboxylic acid oxidase catalysing the synthesis of ethylene in Agaricus bisporus.
    Meng D; Shen L; Yang R; Zhang X; Sheng J
    Biochim Biophys Acta; 2014 Jan; 1840(1):120-8. PubMed ID: 24016603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient homologous integration via tandem exo-beta-1, 3-glucanase genes in the common mushroom, Agaricus bisporus.
    van de Rhee MD; Mendes O; Werten MW; Huizing HJ; Mooibroek H
    Curr Genet; 1996 Jul; 30(2):166-73. PubMed ID: 8660463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new assay method of gamma-glutamyltransferase with 4-aminobenzoate hydroxylase from Agaricus bisporus as a coupling enzyme.
    Mizutani Y; Nakano Y; Yamada S; Samejima T
    Clin Chim Acta; 1999 Sep; 287(1-2):83-97. PubMed ID: 10509898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agaricus bisporus susceptibility to bacterial blotch in relation to environment: biochemical studies.
    Mamoun M; Moquet F; Savoie JM; Devesse C; Ramos-Guedes-Lafargue M; Olivier JM; Arpin N
    FEMS Microbiol Lett; 1999 Dec; 181(1):131-6. PubMed ID: 10564798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and Characterization of β-Glucosidase from Agaricus bisporus (White Button Mushroom).
    Ašić A; Bešić L; Muhović I; Dogan S; Turan Y
    Protein J; 2015 Dec; 34(6):453-61. PubMed ID: 26614504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme, protein, carbohydrate, and phenolic contaminants in commercial tyrosinase preparations: potential problems affecting tyrosinase activity and inhibition studies.
    Flurkey A; Cooksey J; Reddy A; Spoonmore K; Rescigno A; Inlow J; Flurkey WH
    J Agric Food Chem; 2008 Jun; 56(12):4760-8. PubMed ID: 18500813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.