These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 11601609)

  • 41. Homologous xylanases from Clostridium thermocellum: evidence for bi-functional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes.
    Fernandes AC; Fontes CM; Gilbert HJ; Hazlewood GP; Fernandes TH; Ferreira LM
    Biochem J; 1999 Aug; 342 ( Pt 1)(Pt 1):105-10. PubMed ID: 10432306
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ruminococcal cellulosome systems from rumen to human.
    Ben David Y; Dassa B; Borovok I; Lamed R; Koropatkin NM; Martens EC; White BA; Bernalier-Donadille A; Duncan SH; Flint HJ; Bayer EA; Moraïs S
    Environ Microbiol; 2015 Sep; 17(9):3407-26. PubMed ID: 25845888
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Draft genome sequence of the cellulolytic Clostridium thermocellum wild-type strain BC1 playing a role in cellulosic biomass degradation.
    Koeck DE; Wibberg D; Koellmeier T; Blom J; Jaenicke S; Winkler A; Albersmeier A; Zverlov VV; Pühler A; Schwarz WH; Schlüter A
    J Biotechnol; 2013 Oct; 168(1):62-3. PubMed ID: 23968723
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydrolytic effects of scaffolding proteins CbpB and CbpC on crystalline cellulose mediated by the major cellulolytic complex from Clostridium cellulovorans.
    Jeon SD; Kim SJ; Park SH; Choi GW; Han SO
    Bioresour Technol; 2015 Sep; 191():505-11. PubMed ID: 25748018
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of the cellulosomal scaffolding protein CbpC from Clostridium cellulovorans 743B.
    Nakajima D; Shibata T; Tanaka R; Kuroda K; Ueda M; Miyake H
    J Biosci Bioeng; 2017 Oct; 124(4):376-380. PubMed ID: 28533157
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Involvement of separate domains of the cellulosomal protein S1 of Clostridium thermocellum in binding to cellulose and in anchoring of catalytic subunits to the cellulosome.
    Salamitou S; Tokatlidis K; Béguin P; Aubert JP
    FEBS Lett; 1992 Jun; 304(1):89-92. PubMed ID: 1618304
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Clostridium cellulovorans cellulosome: an enzyme complex with plant cell wall degrading activity.
    Doi RH; Tamaru Y
    Chem Rec; 2001; 1(1):24-32. PubMed ID: 11893054
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Insights into the functionality and stability of designer cellulosomes at elevated temperatures.
    Galanopoulou AP; Moraïs S; Georgoulis A; Morag E; Bayer EA; Hatzinikolaou DG
    Appl Microbiol Biotechnol; 2016 Oct; 100(20):8731-43. PubMed ID: 27207145
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Insights into higher-order organization of the cellulosome revealed by a dissect-and-build approach: crystal structure of interacting Clostridium thermocellum multimodular components.
    Adams JJ; Currie MA; Ali S; Bayer EA; Jia Z; Smith SP
    J Mol Biol; 2010 Mar; 396(4):833-9. PubMed ID: 20070943
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆.
    Singh N; Mathur AS; Gupta RP; Barrow CJ; Tuli D; Puri M
    Bioresour Technol; 2018 Feb; 250():860-867. PubMed ID: 30001594
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The microbial ecology of anaerobic cellulose degradation in municipal waste landfill sites: evidence of a role for fibrobacters.
    McDonald JE; Houghton JN; Rooks DJ; Allison HE; McCarthy AJ
    Environ Microbiol; 2012 Apr; 14(4):1077-87. PubMed ID: 22225785
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Determination of the cellulase activity distribution in Clostridium thermocellum and Caldicellulosiruptor obsidiansis cultures using a fluorescent substrate.
    Morrell-Falvey JL; Elkins JG; Wang ZW
    J Environ Sci (China); 2015 Aug; 34():212-8. PubMed ID: 26257364
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Behavior of cellulose-degrading bacteria in thermophilic anaerobic digestion process.
    Syutsubo K; Nagaya Y; Sakai S; Miya A
    Water Sci Technol; 2005; 52(1-2):79-84. PubMed ID: 16180412
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cellulose degradation by Clostridium thermocellum: from manure to molecular biology.
    Béguin P; Millet J; Aubert JP
    FEMS Microbiol Lett; 1992 Dec; 100(1-3):523-8. PubMed ID: 1478480
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adhesion to cellulose by Ruminococcus albus: a combination of cellulosomes and Pil-proteins?
    Morrison M; Miron J
    FEMS Microbiol Lett; 2000 Apr; 185(2):109-15. PubMed ID: 10754233
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses.
    Blouzard JC; Coutinho PM; Fierobe HP; Henrissat B; Lignon S; Tardif C; Pagès S; de Philip P
    Proteomics; 2010 Feb; 10(3):541-54. PubMed ID: 20013800
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cellulosomes - promising supramolecular machines of anaerobic cellulolytic microorganisms.
    Vodovnik M; Marinšek-Logar R
    Acta Chim Slov; 2010 Dec; 57(4):767-74. PubMed ID: 24061876
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A kinetics modeling study on the inhibition of glucose on cellulosome of Clostridium thermocellum.
    Zhang P; Wang B; Xiao Q; Wu S
    Bioresour Technol; 2015 Aug; 190():36-43. PubMed ID: 25919935
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A major new component in the cellulosome of Clostridium thermocellum is a processive endo-beta-1,4-glucanase producing cellotetraose.
    Zverlov VV; Schantz N; Schwarz WH
    FEMS Microbiol Lett; 2005 Aug; 249(2):353-8. PubMed ID: 16006068
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fine-structural variance of family 3 carbohydrate-binding modules as extracellular biomass-sensing components of Clostridium thermocellum anti-σI factors.
    Yaniv O; Fichman G; Borovok I; Shoham Y; Bayer EA; Lamed R; Shimon LJ; Frolow F
    Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):522-34. PubMed ID: 24531486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.