These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 11601732)

  • 1. Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study.
    Keynton RS; Evancho MM; Sims RL; Rodway NV; Gobin A; Rittgers SE
    J Biomech Eng; 2001 Oct; 123(5):464-73. PubMed ID: 11601732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of graft caliber upon wall shear within in vivo distal vascular anastomoses.
    Keynton RS; Evancho MM; Sims RL; Rittgers SE
    J Biomech Eng; 1999 Feb; 121(1):79-88. PubMed ID: 10080093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The protective effect of vein cuffed anastomoses is not mechanical in origin.
    Norberto JJ; Sidawy AN; Trad KS; Jones BA; Neville RF; Najjar SF; Sidawy MK; DePalma RG
    J Vasc Surg; 1995 Apr; 21(4):558-64; discussion 564-6. PubMed ID: 7707561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative contribution of wall shear stress and injury in experimental intimal thickening at PTFE end-to-side arterial anastomoses.
    Loth F; Jones SA; Zarins CK; Giddens DP; Nassar RF; Glagov S; Bassiouny HS
    J Biomech Eng; 2002 Feb; 124(1):44-51. PubMed ID: 11871604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis.
    Lei M; Archie JP; Kleinstreuer C
    J Vasc Surg; 1997 Apr; 25(4):637-46. PubMed ID: 9129618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review.
    Haruguchi H; Teraoka S
    J Artif Organs; 2003; 6(4):227-35. PubMed ID: 14691664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow waveform effects on end-to-side anastomotic flow patterns.
    Ethier CR; Steinman DA; Zhang X; Karpik SR; Ojha M
    J Biomech; 1998 Jul; 31(7):609-17. PubMed ID: 9796683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Particle hemodynamics analysis of Miller cuff arterial anastomosis.
    Longest PW; Kleinstreuer C; Archie JP
    J Vasc Surg; 2003 Dec; 38(6):1353-62. PubMed ID: 14681641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational simulation of flow in the end-to-end anastomosis of a rigid graft and a compliant artery.
    Qiu Y; Tarbell JM
    ASAIO J; 1996; 42(5):M702-9. PubMed ID: 8944971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of anastomotic length on the development of intimal hyperplasia in the distal anastomosis of bypass graft.
    Elsharawy MA; Naim MM; El-Daharawy MH; Shekidef MH; Ahmed IH
    Vascular; 2010; 18(5):256-63. PubMed ID: 20822719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational and experimental simulations of the haemodynamics at cuffed arterial bypass graft anastomoses.
    Cole JS; Wijesinghe LD; Watterson JK; Scott DJ
    Proc Inst Mech Eng H; 2002; 216(2):135-43. PubMed ID: 12022420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle-hemodynamics modeling of the distal end-to-side femoral bypass: effects of graft caliber and graft-end cut.
    Longest PW; Kleinstreuer C
    Med Eng Phys; 2003 Dec; 25(10):843-58. PubMed ID: 14630472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemodynamic Parameters and Early Intimal Thickening in Branching Blood Vessels.
    Kleinstreuer C; Hyun S; Buchanan JR; Longest PW; Archie JP; Truskey GA
    Crit Rev Biomed Eng; 2017; 45(1-6):319-382. PubMed ID: 29953383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of proximal artery flow on the hemodynamics at the distal anastomosis of a vascular bypass graft: computational study.
    Kute SM; Vorp DA
    J Biomech Eng; 2001 Jun; 123(3):277-83. PubMed ID: 11476372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An S-type bypass can improve the hemodynamics in the bypassed arteries and suppress intimal hyperplasia along the host artery floor.
    Fan Y; Xu Z; Jiang W; Deng X; Wang K; Sun A
    J Biomech; 2008 Aug; 41(11):2498-505. PubMed ID: 18573497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational investigations of a new prosthetic femoral-popliteal bypass graft design.
    O'Brien TP; Grace P; Walsh M; Burke P; McGloughlin T
    J Vasc Surg; 2005 Dec; 42(6):1169-75. PubMed ID: 16376210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts.
    Leuprecht A; Perktold K; Prosi M; Berk T; Trubel W; Schima H
    J Biomech; 2002 Feb; 35(2):225-36. PubMed ID: 11784541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia.
    Hofer M; Rappitsch G; Perktold K; Trubel W; Schima H
    J Biomech; 1996 Oct; 29(10):1297-308. PubMed ID: 8884475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of flow through a Miller cuff bypass graft.
    Henry FS; Küpper C; Lewington NP
    Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):207-17. PubMed ID: 12186713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.