These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 11601732)
21. Fluid dynamics, wall mechanics, and oxygen transfer in peripheral bypass anastomoses. Perktold K; Leuprecht A; Prosi M; Berk T; Czerny M; Trubel W; Schima H Ann Biomed Eng; 2002 Apr; 30(4):447-60. PubMed ID: 12085997 [TBL] [Abstract][Full Text] [Related]
22. Flow dynamics across end-to-end vascular bypass graft anastomoses. Kim YH; Chandran KB; Bower TJ; Corson JD Ann Biomed Eng; 1993; 21(4):311-20. PubMed ID: 8214816 [TBL] [Abstract][Full Text] [Related]
23. The effect of angle on wall shear stresses in a LIMA to LAD anastomosis: numerical modelling of pulsatile flow. Freshwater IJ; Morsi YS; Lai T Proc Inst Mech Eng H; 2006 Oct; 220(7):743-57. PubMed ID: 17117764 [TBL] [Abstract][Full Text] [Related]
24. Spatial and temporal variations of wall shear stress within an end-to-side arterial anastomosis model. Ojha M J Biomech; 1993 Dec; 26(12):1377-88. PubMed ID: 8308043 [TBL] [Abstract][Full Text] [Related]
25. Hemodynamic factors at the distal end-to-side anastomosis of a bypass graft with different POS:DOS flow ratios. Li XM; Rittgers SE J Biomech Eng; 2001 Jun; 123(3):270-6. PubMed ID: 11476371 [TBL] [Abstract][Full Text] [Related]
26. Hemodynamic parameters and early intimal thickening in branching blood vessels. Kleinstreuer C; Hyun S; Buchanan JR; Longest PW; Archie JP; Truskey GA Crit Rev Biomed Eng; 2001; 29(1):1-64. PubMed ID: 11321642 [TBL] [Abstract][Full Text] [Related]
27. Numerical simulation of wall shear stress and particle-based hemodynamic parameters in pre-cuffed and streamlined end-to-side anastomoses. Longest PW; Kleinstreuer C; Deanda A Ann Biomed Eng; 2005 Dec; 33(12):1752-66. PubMed ID: 16389524 [TBL] [Abstract][Full Text] [Related]
28. The ratio of diameters between the target artery and the bypass modifies hemodynamic parameters related to intimal hyperplasia in the distal end-to-side anastomosis. Grus T; Lambert L; Matěcha J; Grusová G; Špaček M; Mlček M Physiol Res; 2016 Dec; 65(6):901-908. PubMed ID: 27539100 [TBL] [Abstract][Full Text] [Related]
29. Numerical simulation of wall shear stress conditions and platelet localization in realistic end-to-side arterial anastomoses. Longest PW; Kleinstreuer C J Biomech Eng; 2003 Oct; 125(5):671-81. PubMed ID: 14618926 [TBL] [Abstract][Full Text] [Related]
30. The direct effect of graft compliance mismatch per se on development of host arterial intimal hyperplasia at the anastomotic interface. Wu MH; Shi Q; Sauvage LR; Kaplan S; Hayashida N; Patel MD; Wechezak AR; Walker MW Ann Vasc Surg; 1993 Mar; 7(2):156-68. PubMed ID: 8518133 [TBL] [Abstract][Full Text] [Related]
31. Vascular clips have no significant effect on the cellular proliferation, intimal changes, or peak systolic velocity at anastomoses in rabbit vein grafts. Caiati JM; Madigan JD; Bhagat G; Benvenisty AI; Nowygrod R; Todd GJ J Surg Res; 2000 Jul; 92(1):29-35. PubMed ID: 10864478 [TBL] [Abstract][Full Text] [Related]
32. Effects of radial wall motion and flow waveform on the wall shear rate distribution in the divergent vascular graft. Rhee K; Lee SM Ann Biomed Eng; 1998; 26(6):955-64. PubMed ID: 9846934 [TBL] [Abstract][Full Text] [Related]
33. Mis-sizing of stent promotes intimal hyperplasia: impact of endothelial shear and intramural stress. Chen HY; Sinha AK; Choy JS; Zheng H; Sturek M; Bigelow B; Bhatt DL; Kassab GS Am J Physiol Heart Circ Physiol; 2011 Dec; 301(6):H2254-63. PubMed ID: 21926337 [TBL] [Abstract][Full Text] [Related]
34. Is there a haemodynamic advantage associated with cuffed arterial anastomoses? Cole JS; Watterson JK; O'Reilly MJ J Biomech; 2002 Oct; 35(10):1337-46. PubMed ID: 12231279 [TBL] [Abstract][Full Text] [Related]
35. Effect of arteriovenous graft flow rate on vascular access hemodynamics in a novel modular anastomotic valve device. McNally A; Akingba AG; Sucosky P J Vasc Access; 2018 Sep; 19(5):446-454. PubMed ID: 30192183 [TBL] [Abstract][Full Text] [Related]
36. Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients. Wells DR; Archie JP; Kleinstreuer C J Vasc Surg; 1996 Apr; 23(4):667-78. PubMed ID: 8627904 [TBL] [Abstract][Full Text] [Related]
37. A study of the wall shear rate distribution near the end-to-end anastomosis of a rigid graft and a compliant artery. Rhee K; Tarbell JM J Biomech; 1994 Mar; 27(3):329-38. PubMed ID: 8051193 [TBL] [Abstract][Full Text] [Related]
38. The effect of wall distensibility on flow in a two-dimensional end-to-side anastomosis. Steinman DA; Ethier CR J Biomech Eng; 1994 Aug; 116(3):294-301. PubMed ID: 7799630 [TBL] [Abstract][Full Text] [Related]
39. Flow patterns and preferred sites of intimal thickening in bypass-grafted arteries . Sunamura M; Ishibashi H; Karino T Int Angiol; 2012 Apr; 31(2):187-97. PubMed ID: 22466986 [TBL] [Abstract][Full Text] [Related]