BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 11601982)

  • 1. The electric field generated by photosynthetic reaction center induces rapid reversed electron transfer in the bc1 complex.
    Shinkarev VP; Crofts AR; Wraight CA
    Biochemistry; 2001 Oct; 40(42):12584-90. PubMed ID: 11601982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photo-induced cyclic electron transfer involving cytochrome bc1 complex and reaction center in the obligate aerobic phototroph Roseobacter denitrificans.
    Schwarze C; Carluccio AV; Venturoli G; Labahn A
    Eur J Biochem; 2000 Jan; 267(2):422-33. PubMed ID: 10632712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron sweep across four b-hemes of cytochrome bc
    Pintscher S; Pietras R; Sarewicz M; Osyczka A
    Biochim Biophys Acta Bioenerg; 2018 Jun; 1859(6):459-469. PubMed ID: 29596789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of the midpoint potential of the [2Fe-2S] Rieske iron sulfur center by Qo occupants in the bc1 complex.
    Shinkarev VP; Kolling DR; Miller TJ; Crofts AR
    Biochemistry; 2002 Dec; 41(48):14372-82. PubMed ID: 12450404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow electrogenic events in the cytochrome bc1-complex of Rhodobacter sphaeroides. The electron transfer between cytochrome b hemes can be non-electrogenic.
    Mulkidjanian AYa ; Mamedov MD; Drachev LA
    FEBS Lett; 1991 Jun; 284(2):227-31. PubMed ID: 1647985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of vibrational spectra of individual heme active sites in cytochrome bc1 complexes from Rhodobacter capsulatus.
    Gao F; Qin H; Simpson MC; Shelnutt JA; Knaff DB; Ondrias MR
    Biochemistry; 1996 Oct; 35(39):12812-9. PubMed ID: 8841124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DCCD inhibits the reactions of the iron-sulfur protein in Rhodobacter sphaeroides chromatophores.
    Shinkarev VP; Ugulava NB; Crofts AR; Wraight CA
    Biochemistry; 2000 Dec; 39(51):16206-12. PubMed ID: 11123950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of cytochrome b-561 through the antimycin-sensitive site of the ubiquinol-cytochrome c2 oxidoreductase complex of Rhodopseudomonas sphaeroides.
    Glaser EG; Meinhardt SW; Crofts AR
    FEBS Lett; 1984 Dec; 178(2):336-42. PubMed ID: 6096171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential induced redox reactions in mitochondrial and bacterial cytochrome b-c1 complexes.
    Tolkatchev D; Yu L; Yu CA
    J Biol Chem; 1996 May; 271(21):12356-63. PubMed ID: 8647838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ubiquinol-cytochrome c oxidoreductase. The redox reactions of the bis-heme cytochrome b in ubiquinone-sufficient and ubiquinone-deficient systems.
    Matsuno-Yagi A; Hatefi Y
    J Biol Chem; 1996 Mar; 271(11):6164-71. PubMed ID: 8626405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane-anchored cytochrome cy mediated microsecond time range electron transfer from the cytochrome bc1 complex to the reaction center in Rhodobacter capsulatus.
    Myllykallio H; Drepper F; Mathis P; Daldal F
    Biochemistry; 1998 Apr; 37(16):5501-10. PubMed ID: 9548933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EPR characterization of the cytochrome b-c1 complex from Rhodobacter sphaeroides.
    McCurley JP; Miki T; Yu L; Yu CA
    Biochim Biophys Acta; 1990 Nov; 1020(2):176-86. PubMed ID: 2173951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting the pattern of proton release from partial process involved in ubihydroquinone oxidation in the Q-cycle.
    Wilson CA; Crofts AR
    Biochim Biophys Acta Bioenerg; 2018 Jul; 1859(7):531-543. PubMed ID: 29625088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two distinct quinone-modulated modes of antimycin-sensitive cytochrome b reduction in the cytochrome bc1 complex.
    Robertson DE; Giangiacomo KM; de Vries S; Moser CC; Dutton PL
    FEBS Lett; 1984 Dec; 178(2):343-50. PubMed ID: 6096172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 2. PufX is required for efficient ubiquinone/ubiquinol exchange between the reaction center QB site and the cytochrome bc1 complex.
    Barz WP; Verméglio A; Francia F; Venturoli G; Melandri BA; Oesterhelt D
    Biochemistry; 1995 Nov; 34(46):15248-58. PubMed ID: 7578140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-cooperative oxidation of ubiquinol by the yeast cytochrome bc1 complex.
    Covian R; Gutierrez-Cirlos EB; Trumpower BL
    J Biol Chem; 2004 Apr; 279(15):15040-9. PubMed ID: 14761953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Rhodospirillum rubrum cytochrome bc1 complex: redox properties, inhibitor sensitivity and proton pumping.
    Güner S; Robertson DE; Yu L; Qiu ZH; Yu CA; Knaff DB
    Biochim Biophys Acta; 1991 Jun; 1058(2):269-79. PubMed ID: 1646633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid electron transfer between monomers when the cytochrome bc1 complex dimer is reduced through center N.
    Covian R; Trumpower BL
    J Biol Chem; 2005 Jun; 280(24):22732-40. PubMed ID: 15833742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial reversion of the electrogenic reaction in the ubiquinol: cytochrome c2-oxidoreductase of Rhodobacter sphaeroides chromatophores under neutral and alkaline conditions.
    Mulkidjanian AYa ; Mamedov MD; Semenov AYu ; Shinkarev VP; Verkhovsky MI; Drachev LA
    FEBS Lett; 1990 Dec; 277(1-2):127-30. PubMed ID: 2176609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical and spectral analysis of the long-range interactions between the Qo and Qi sites and the heme prosthetic groups in ubiquinol-cytochrome c oxidoreductase.
    Howell N; Robertson DE
    Biochemistry; 1993 Oct; 32(41):11162-72. PubMed ID: 8218179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.