These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 11601986)
21. Light-induced translocation of RGS9-1 and Gβ5L in mouse rod photoreceptors. Tian M; Zallocchi M; Wang W; Chen CK; Palczewski K; Delimont D; Cosgrove D; Peng YW PLoS One; 2013; 8(3):e58832. PubMed ID: 23555598 [TBL] [Abstract][Full Text] [Related]
22. Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 A. Slep KC; Kercher MA; He W; Cowan CW; Wensel TG; Sigler PB Nature; 2001 Feb; 409(6823):1071-7. PubMed ID: 11234020 [TBL] [Abstract][Full Text] [Related]
23. Dependence of RGS9-1 membrane attachment on its C-terminal tail. He W; Melia TJ; Cowan CW; Wensel TG J Biol Chem; 2001 Dec; 276(52):48961-6. PubMed ID: 11677233 [TBL] [Abstract][Full Text] [Related]
24. R9AP, a membrane anchor for the photoreceptor GTPase accelerating protein, RGS9-1. Hu G; Wensel TG Proc Natl Acad Sci U S A; 2002 Jul; 99(15):9755-60. PubMed ID: 12119397 [TBL] [Abstract][Full Text] [Related]
25. Regulators of G protein signaling 6 and 7. Purification of complexes with gbeta5 and assessment of their effects on g protein-mediated signaling pathways. Posner BA; Gilman AG; Harris BA J Biol Chem; 1999 Oct; 274(43):31087-93. PubMed ID: 10521509 [TBL] [Abstract][Full Text] [Related]
26. RGS9-1 phosphorylation and Ca2+. Wensel TG Adv Exp Med Biol; 2002; 514():125-9. PubMed ID: 12596919 [TBL] [Abstract][Full Text] [Related]
27. Defects in RGS9 or its anchor protein R9AP in patients with slow photoreceptor deactivation. Nishiguchi KM; Sandberg MA; Kooijman AC; Martemyanov KA; Pott JW; Hagstrom SA; Arshavsky VY; Berson EL; Dryja TP Nature; 2004 Jan; 427(6969):75-8. PubMed ID: 14702087 [TBL] [Abstract][Full Text] [Related]
28. RGS proteins: lessons from the RGS9 subfamily. Cowan CW; He W; Wensel TG Prog Nucleic Acid Res Mol Biol; 2001; 65():341-59. PubMed ID: 11008492 [TBL] [Abstract][Full Text] [Related]
29. Differential spatial and temporal phosphorylation of the visual receptor, rhodopsin, at two primary phosphorylation sites in mice exposed to light. Adams RA; Liu X; Williams DS; Newton AC Biochem J; 2003 Sep; 374(Pt 2):537-43. PubMed ID: 12809555 [TBL] [Abstract][Full Text] [Related]
30. Regulation of phosducin phosphorylation in retinal rods by Ca2+/calmodulin-dependent adenylyl cyclase. Willardson BM; Wilkins JF; Yoshida T; Bitensky MW Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1475-9. PubMed ID: 8643657 [TBL] [Abstract][Full Text] [Related]
31. Whither goest the RGS proteins? Siderovski DP; Strockbine B; Behe CI Crit Rev Biochem Mol Biol; 1999; 34(4):215-51. PubMed ID: 10517644 [TBL] [Abstract][Full Text] [Related]
32. Phosphorylation of the gamma subunit of the retinal photoreceptor cGMP phosphodiesterase by the cAMP-dependent protein kinase and its effect on the gamma subunit interaction with other proteins. Xu LX; Tanaka Y; Bonderenko VA; Matsuura I; Matsumoto H; Yamazaki A; Hayashi F Biochemistry; 1998 Apr; 37(17):6205-13. PubMed ID: 9558360 [TBL] [Abstract][Full Text] [Related]
33. Phosducin and PP33 are in vivo targets of PKA and type 1 or 2A phosphatases, regulators of cell elongation in teleost rod inner-outer segments. Pagh-Roehl K; Lin D; Su L; Burnside B J Neurosci; 1995 Oct; 15(10):6475-88. PubMed ID: 7472410 [TBL] [Abstract][Full Text] [Related]
34. Intramolecular interaction between the DEP domain of RGS7 and the Gbeta5 subunit. Narayanan V; Sandiford SL; Wang Q; Keren-Raifman T; Levay K; Slepak VZ Biochemistry; 2007 Jun; 46(23):6859-70. PubMed ID: 17511476 [TBL] [Abstract][Full Text] [Related]
35. High expression levels in cones of RGS9, the predominant GTPase accelerating protein of rods. Cowan CW; Fariss RN; Sokal I; Palczewski K; Wensel TG Proc Natl Acad Sci U S A; 1998 Apr; 95(9):5351-6. PubMed ID: 9560279 [TBL] [Abstract][Full Text] [Related]
36. Characterization of R9AP, a membrane anchor for the photoreceptor GTPase-accelerating protein, RGS9-1. Hu G; Wensel TG Methods Enzymol; 2004; 390():178-96. PubMed ID: 15488178 [TBL] [Abstract][Full Text] [Related]
37. RGS9-G beta 5 substrate selectivity in photoreceptors. Opposing effects of constituent domains yield high affinity of RGS interaction with the G protein-effector complex. Skiba NP; Martemyanov KA; Elfenbein A; Hopp JA; Bohm A; Simonds WF; Arshavsky VY J Biol Chem; 2001 Oct; 276(40):37365-72. PubMed ID: 11495924 [TBL] [Abstract][Full Text] [Related]
38. Site-specific phosphorylation of phosducin in intact retina. Dynamics of phosphorylation and effects on G protein beta gamma dimer binding. Lee BY; Thulin CD; Willardson BM J Biol Chem; 2004 Dec; 279(52):54008-17. PubMed ID: 15485848 [TBL] [Abstract][Full Text] [Related]
39. The alpha-helical domain of Galphat determines specific interaction with regulator of G protein signaling 9. Skiba NP; Yang CS; Huang T; Bae H; Hamm HE J Biol Chem; 1999 Mar; 274(13):8770-8. PubMed ID: 10085118 [TBL] [Abstract][Full Text] [Related]
40. Transducin activation state controls its light-dependent translocation in rod photoreceptors. Kerov V; Chen D; Moussaif M; Chen YJ; Chen CK; Artemyev NO J Biol Chem; 2005 Dec; 280(49):41069-76. PubMed ID: 16207703 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]