BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11602186)

  • 1. Nitric oxide inhibition of cAMP synthesis in parotid acini: regulation of type 5/6 adenylyl cyclase.
    Watson EL; Singh JC; Jacobson KL; Ott SM
    Cell Signal; 2001 Oct; 13(10):755-63. PubMed ID: 11602186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The type 8 adenylyl cyclase is critical for Ca2+ stimulation of cAMP accumulation in mouse parotid acini.
    Watson EL; Jacobson KL; Singh JC; Idzerda R; Ott SM; DiJulio DH; Wong ST; Storm DR
    J Biol Chem; 2000 May; 275(19):14691-9. PubMed ID: 10799557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capacitative Ca2+ entry is involved in cAMP synthesis in mouse parotid acini.
    Watson EL; Wu Z; Jacobson KL; Storm DR; Singh JC; Ott SM
    Am J Physiol; 1998 Mar; 274(3):C557-65. PubMed ID: 9530086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide acts independently of cGMP to modulate capacitative Ca(2+) entry in mouse parotid acini.
    Watson EL; Jacobson KL; Singh JC; Ott SM
    Am J Physiol; 1999 Aug; 277(2):C262-70. PubMed ID: 10444402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuation of cAMP accumulation in adult rat cardiac fibroblasts by IL-1beta and NO: role of cGMP-stimulated PDE2.
    Gustafsson AB; Brunton LL
    Am J Physiol Cell Physiol; 2002 Aug; 283(2):C463-71. PubMed ID: 12107056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human immunodeficiency virus type 1 Tat protein decreases cyclic AMP synthesis in rat microglia cultures.
    Patrizio M; Colucci M; Levi G
    J Neurochem; 2001 Apr; 77(2):399-407. PubMed ID: 11299302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phorbol ester has different effects on forskolin and beta-adrenergic-stimulated cAMP accumulation in mouse parotid acini.
    Watson EL; Jacobson K; Meier K
    Cell Signal; 1993 Sep; 5(5):583-92. PubMed ID: 7508731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of guanylyl cyclase, protein kinase A and Na+ K+ ATPase in relaxations of bovine isolated bronchioles induced by GEA 3175, an NO donor.
    Elmedal Laursen B; Mulvany MJ; Simonsen U
    Pulm Pharmacol Ther; 2006; 19(3):179-88. PubMed ID: 16023394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of SNI-2011 on amylase secretion from parotid tissue in rats and in neuronal nitric oxide synthase knockout mice.
    Yuan Z; Iida H; Inoue N; Ishikawa Y; Ishida H
    Eur J Pharmacol; 2003 Mar; 464(2-3):197-206. PubMed ID: 12620514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide inhibits capacitative Ca2+ entry by suppression of mitochondrial Ca2+ handling.
    Thyagarajan B; Malli R; Schmidt K; Graier WF; Groschner K
    Br J Pharmacol; 2002 Nov; 137(6):821-30. PubMed ID: 12411413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arachidonic acid regulates two Ca2+ entry pathways via nitric oxide.
    Watson EL; Jacobson KL; Singh JC; DiJulio DH
    Cell Signal; 2004 Feb; 16(2):157-65. PubMed ID: 14636886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of cAMP metabolism in mouse parotid gland by cGMP and calcium.
    Watson EL; Singh JC; McPhee C; Beavo J; Jacobson KL
    Mol Pharmacol; 1990 Oct; 38(4):547-53. PubMed ID: 1700270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High and low gain switches for regulation of cAMP efflux concentration: distinct roles for particulate GC- and soluble GC-cGMP-PDE3 signaling in rabbit atria.
    Wen JF; Cui X; Jin JY; Kim SM; Kim SZ; Kim SH; Lee HS; Cho KW
    Circ Res; 2004 Apr; 94(7):936-43. PubMed ID: 14988225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel guanylyl cyclase inhibitor, ODQ reveals role of nitric oxide, but not of cyclic GMP in endothelin-1 secretion.
    Brunner F; Stessel H; Kukovetz WR
    FEBS Lett; 1995 Dec; 376(3):262-6. PubMed ID: 7498555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of glutamatergic neurotransmission in the striatum by presynaptic adenylyl cyclase-dependent processes.
    Dohovics R; Janáky R; Varga V; Hermann A; Saransaari P; Oja SS
    Neurochem Int; 2003 Jan; 42(1):1-7. PubMed ID: 12441162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordinate regulation of membrane cAMP by Ca2+-inhibited adenylyl cyclase and phosphodiesterase activities.
    Creighton JR; Masada N; Cooper DM; Stevens T
    Am J Physiol Lung Cell Mol Physiol; 2003 Jan; 284(1):L100-7. PubMed ID: 12471013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide regulates cardiac Ca2+ current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation.
    Méry PF; Pavoine C; Belhassen L; Pecker F; Fischmeister R
    J Biol Chem; 1993 Dec; 268(35):26286-95. PubMed ID: 7902837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relaxation and modulation of cyclic AMP production in response to atrial natriuretic peptides in guinea pig tracheal smooth muscle.
    Devillier P; Corompt E; Bréant D; Caron F; Bessard G
    Eur J Pharmacol; 2001 Nov; 430(2-3):325-33. PubMed ID: 11711051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angiotensin II potentiates adrenocorticotrophic hormone-induced cAMP formation in bovine adrenal glomerulosa cells through a capacitative calcium influx.
    Burnay MM; Vallotton MB; Capponi AM; Rossier MF
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):21-7. PubMed ID: 9461485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of thapsigargin-induced calcium mobilisation by cyclic AMP-elevating agents in human lymphocytes is insensitive to the action of the protein kinase A inhibitor H-89.
    de la Rosa LA; Vilariño N; Vieytes MR; Botana LM
    Cell Signal; 2001 Jun; 13(6):441-9. PubMed ID: 11384843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.