BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 11602606)

  • 1. Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p.
    Luk EE; Culotta VC
    J Biol Chem; 2001 Dec; 276(50):47556-62. PubMed ID: 11602606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saccharomyces cerevisiae expresses three functionally distinct homologues of the nramp family of metal transporters.
    Portnoy ME; Liu XF; Culotta VC
    Mol Cell Biol; 2000 Nov; 20(21):7893-902. PubMed ID: 11027260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of oxidative damage by Saccharomyces cerevisiae ATX2, which encodes a manganese-trafficking protein that localizes to Golgi-like vesicles.
    Lin SJ; Culotta VC
    Mol Cell Biol; 1996 Nov; 16(11):6303-12. PubMed ID: 8887660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of mitochondrial iron homeostasis on cofactor specificity of superoxide dismutase 2.
    Yang M; Cobine PA; Molik S; Naranuntarat A; Lill R; Winge DR; Culotta VC
    EMBO J; 2006 Apr; 25(8):1775-83. PubMed ID: 16601688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The overlapping roles of manganese and Cu/Zn SOD in oxidative stress protection.
    Reddi AR; Jensen LT; Naranuntarat A; Rosenfeld L; Leung E; Shah R; Culotta VC
    Free Radic Biol Med; 2009 Jan; 46(2):154-62. PubMed ID: 18973803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manganese activation of superoxide dismutase 2 in the mitochondria of Saccharomyces cerevisiae.
    Luk E; Yang M; Jensen LT; Bourbonnais Y; Culotta VC
    J Biol Chem; 2005 Jun; 280(24):22715-20. PubMed ID: 15851472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family.
    Luk E; Carroll M; Baker M; Culotta VC
    Proc Natl Acad Sci U S A; 2003 Sep; 100(18):10353-7. PubMed ID: 12890866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manganese redistribution by calcium-stimulated vesicle trafficking bypasses the need for P-type ATPase function.
    García-Rodríguez N; Manzano-López J; Muñoz-Bravo M; Fernández-García E; Muñiz M; Wellinger RE
    J Biol Chem; 2015 Apr; 290(15):9335-47. PubMed ID: 25713143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial protein oxidation in yeast mutants lacking manganese-(MnSOD) or copper- and zinc-containing superoxide dismutase (CuZnSOD): evidence that MnSOD and CuZnSOD have both unique and overlapping functions in protecting mitochondrial proteins from oxidative damage.
    O'Brien KM; Dirmeier R; Engle M; Poyton RO
    J Biol Chem; 2004 Dec; 279(50):51817-27. PubMed ID: 15385544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Down-regulation of a manganese transporter in the face of metal toxicity.
    Jensen LT; Carroll MC; Hall MD; Harvey CJ; Beese SE; Culotta VC
    Mol Biol Cell; 2009 Jun; 20(12):2810-9. PubMed ID: 19369420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Saccharomyces cerevisiae high affinity phosphate transporter encoded by PHO84 also functions in manganese homeostasis.
    Jensen LT; Ajua-Alemanji M; Culotta VC
    J Biol Chem; 2003 Oct; 278(43):42036-40. PubMed ID: 12923174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The family of SMF metal ion transporters in yeast cells.
    Cohen A; Nelson H; Nelson N
    J Biol Chem; 2000 Oct; 275(43):33388-94. PubMed ID: 10930410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the Saccharomyces cerevisiae CCC1 gene in the homeostasis of manganese ions.
    Lapinskas PJ; Lin SJ; Culotta VC
    Mol Microbiol; 1996 Aug; 21(3):519-28. PubMed ID: 8866476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manganese toxicity and Saccharomyces cerevisiae Mam3p, a member of the ACDP (ancient conserved domain protein) family.
    Yang M; Jensen LT; Gardner AJ; Culotta VC
    Biochem J; 2005 Mar; 386(Pt 3):479-87. PubMed ID: 15498024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divalent metal transport in the green microalga Chlamydomonas reinhardtii is mediated by a protein similar to prokaryotic Nramp homologues.
    Rosakis A; Köster W
    Biometals; 2005 Feb; 18(1):107-20. PubMed ID: 15865416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering.
    Culotta VC; Joh HD; Lin SJ; Slekar KH; Strain J
    J Biol Chem; 1995 Dec; 270(50):29991-7. PubMed ID: 8530401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restriction of copper export in Saccharomyces cerevisiae to a late Golgi or post-Golgi compartment in the secretory pathway.
    Yuan DS; Dancis A; Klausner RD
    J Biol Chem; 1997 Oct; 272(41):25787-93. PubMed ID: 9325307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction of mitochondrial iron with manganese superoxide dismutase.
    Naranuntarat A; Jensen LT; Pazicni S; Penner-Hahn JE; Culotta VC
    J Biol Chem; 2009 Aug; 284(34):22633-40. PubMed ID: 19561359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The yeast protein Gdt1p transports Mn
    Thines L; Deschamps A; Sengottaiyan P; Savel O; Stribny J; Morsomme P
    J Biol Chem; 2018 May; 293(21):8048-8055. PubMed ID: 29632074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage.
    Sturtz LA; Diekert K; Jensen LT; Lill R; Culotta VC
    J Biol Chem; 2001 Oct; 276(41):38084-9. PubMed ID: 11500508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.