BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

597 related articles for article (PubMed ID: 11604130)

  • 21. Characterization of Hox genes in the bichir, Polypterus palmas.
    Ledje C; Kim CB; Ruddle FH
    J Exp Zool; 2002 Aug; 294(2):107-11. PubMed ID: 12210111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conservation of a vitellogenin gene cluster in oviparous vertebrates and identification of its traces in the platypus genome.
    Babin PJ
    Gene; 2008 Apr; 413(1-2):76-82. PubMed ID: 18343608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Duplication of phospholipase C-delta gene family in fish genomes.
    Kim MS; Seo JS; Ahn SJ; Kim NY; Je JE; Sung JH; Lee HH; Chung JK
    Genomics; 2008 Nov; 92(5):366-71. PubMed ID: 18722520
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conservation and divergence of Bmp2a, Bmp2b, and Bmp4 expression patterns within and between dentitions of teleost fishes.
    Wise SB; Stock DW
    Evol Dev; 2006; 8(6):511-23. PubMed ID: 17073935
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phylogenetic relationships and chromosomal location of five distinct glycine receptor subunit genes in the teleost Danio rerio.
    Imboden M; Devignot V; Goblet C
    Dev Genes Evol; 2001 Sep; 211(8-9):415-22. PubMed ID: 11685575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hox clusters of the bichir (Actinopterygii, Polypterus senegalus) highlight unique patterns of sequence evolution in gnathostome phylogeny.
    Raincrow JD; Dewar K; Stocsits C; Prohaska SJ; Amemiya CT; Stadler PF; Chiu CH
    J Exp Zool B Mol Dev Evol; 2011 Sep; 316(6):451-64. PubMed ID: 21688387
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Birth and death of neuropeptide Y receptor genes in relation to the teleost fish tetraploidization.
    Salaneck E; Larsson TA; Larson ET; Larhammar D
    Gene; 2008 Feb; 409(1-2):61-71. PubMed ID: 18191918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution of vomeronasal-type odorant receptor genes in the zebrafish genome.
    Hashiguchi Y; Nishida M
    Gene; 2005 Dec; 362():19-28. PubMed ID: 16226854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Organization and structure of hox gene loci in medaka genome and comparison with those of pufferfish and zebrafish genomes.
    Kurosawa G; Takamatsu N; Takahashi M; Sumitomo M; Sanaka E; Yamada K; Nishii K; Matsuda M; Asakawa S; Ishiguro H; Miura K; Kurosawa Y; Shimizu N; Kohara Y; Hori H
    Gene; 2006 Mar; 370():75-82. PubMed ID: 16472944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative genomics of duplicate γ-glutamyl transferase genes in teleosts: medaka (Oryzias latipes), stickleback (Gasterosteus aculeatus), green spotted pufferfish (Tetraodon nigroviridis), fugu (Takifugu rubripes), and zebrafish (Danio rerio).
    Law SH; Redelings BD; Kullman SW
    J Exp Zool B Mol Dev Evol; 2012 Jan; 318(1):35-49. PubMed ID: 21898790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oct2 transcription factors in fish--a comparative genomic analysis.
    Lennard ML; Wilson MR; Miller NW; Clem LW; Warr GW; Hikima J
    Fish Shellfish Immunol; 2006 Feb; 20(2):227-38. PubMed ID: 15939624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromosomal localization of three somatostatin genes in zebrafish. Evidence that the [Pro2]-somatostatin-14 isoform and cortistatin are encoded by orthologous genes.
    Tostivint H; Joly L; Lihrmann I; Ekker M; Vaudry H
    J Mol Endocrinol; 2004 Dec; 33(3):R1-8. PubMed ID: 15591018
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phylogenetic and chromosomal analyses of multiple gene families syntenic with vertebrate Hox clusters.
    Sundström G; Larsson TA; Larhammar D
    BMC Evol Biol; 2008 Sep; 8():254. PubMed ID: 18803835
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gene loss and evolutionary rates following whole-genome duplication in teleost fishes.
    Brunet FG; Roest Crollius H; Paris M; Aury JM; Gibert P; Jaillon O; Laudet V; Robinson-Rechavi M
    Mol Biol Evol; 2006 Sep; 23(9):1808-16. PubMed ID: 16809621
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative genomic organization and tissue-specific transcription of the duplicated fabp7 and fabp10 genes in teleost fishes.
    Parmar MB; Wright JM
    Genome; 2013 Nov; 56(11):691-701. PubMed ID: 24299108
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two divergent leptin paralogues in zebrafish (Danio rerio) that originate early in teleostean evolution.
    Gorissen M; Bernier NJ; Nabuurs SB; Flik G; Huising MO
    J Endocrinol; 2009 Jun; 201(3):329-39. PubMed ID: 19293295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Japanese medaka Hox paralog group 2: insights into the evolution of Hox PG2 gene composition and expression in the Osteichthyes.
    Davis A; Scemama JL; Stellwag EJ
    J Exp Zool B Mol Dev Evol; 2008 Dec; 310(8):623-41. PubMed ID: 18850588
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study.
    Li C; Ortí G; Zhang G; Lu G
    BMC Evol Biol; 2007 Mar; 7():44. PubMed ID: 17374158
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The zebrafish genome in context: ohnologs gone missing.
    Postlethwait JH
    J Exp Zool B Mol Dev Evol; 2007 Sep; 308(5):563-77. PubMed ID: 17068775
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genomic characterization and expression analysis of the first nonmammalian renin genes from zebrafish and pufferfish.
    Liang P; Jones CA; Bisgrove BW; Song L; Glenn ST; Yost HJ; Gross KW
    Physiol Genomics; 2004 Feb; 16(3):314-22. PubMed ID: 14645735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.