BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11604152)

  • 1. Assessment of cerebral autoregulation using time-domain cross-correlation analysis.
    Chiu CC; Yeh SJ
    Comput Biol Med; 2001 Nov; 31(6):471-80. PubMed ID: 11604152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebral hemodynamics during orthostatic stress assessed by nonlinear modeling.
    Mitsis GD; Zhang R; Levine BD; Marmarelis VZ
    J Appl Physiol (1985); 2006 Jul; 101(1):354-66. PubMed ID: 16514006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Causality analysis reveals the link between cerebrovascular control and acute kidney dysfunction after coronary artery bypass grafting.
    Vaini E; Bari V; Fantinato A; Pistuddi V; Cairo B; De Maria B; Ranucci M; Porta A
    Physiol Meas; 2019 Jul; 40(6):064006. PubMed ID: 31091519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms underlying phase lag between systemic arterial blood pressure and cerebral blood flow velocity.
    Kuo TB; Chern CM; Yang CC; Hsu HY; Wong WJ; Sheng WY; Hu HH
    Cerebrovasc Dis; 2003; 16(4):402-9. PubMed ID: 13130182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfer function analysis for clinical evaluation of dynamic cerebral autoregulation--a comparison between spontaneous and respiratory-induced oscillations.
    Reinhard M; Müller T; Guschlbauer B; Timmer J; Hetzel A
    Physiol Meas; 2003 Feb; 24(1):27-43. PubMed ID: 12636185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency domain analysis of cerebral blood flow velocity and its correlation with arterial blood pressure.
    Kuo TB; Chern CM; Sheng WY; Wong WJ; Hu HH
    J Cereb Blood Flow Metab; 1998 Mar; 18(3):311-8. PubMed ID: 9498848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applying time-frequency analysis to assess cerebral autoregulation during hypercapnia.
    Placek MM; Wachel P; Iskander DR; Smielewski P; Uryga A; Mielczarek A; Szczepański TA; Kasprowicz M
    PLoS One; 2017; 12(7):e0181851. PubMed ID: 28750024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer function analysis of dynamic cerebral autoregulation in preeclampsia.
    Williams KP; Galerneau F; Small M
    Pregnancy Hypertens; 2015 Oct; 5(4):322-4. PubMed ID: 26597748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous fluctuations in cerebral blood flow: insights from extended-duration recordings in humans.
    Zhang R; Zuckerman JH; Levine BD
    Am J Physiol Heart Circ Physiol; 2000 Jun; 278(6):H1848-55. PubMed ID: 10843881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliability, asymmetry, and age influence on dynamic cerebral autoregulation measured by spontaneous fluctuations of blood pressure and cerebral blood flow velocities in healthy individuals.
    Ortega-Gutierrez S; Petersen N; Masurkar A; Reccius A; Huang A; Li M; Choi JH; Marshall RS
    J Neuroimaging; 2014; 24(4):379-86. PubMed ID: 23607680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic cerebral autoregulation assessment using chaotic analysis in diabetic autonomic neuropathy.
    Liau BY; Yeh SJ; Chiu CC; Tsai YC
    Med Biol Eng Comput; 2008 Jan; 46(1):1-9. PubMed ID: 17874153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebral circulation during mild +Gz hypergravity by short-arm human centrifuge.
    Iwasaki K; Ogawa Y; Aoki K; Yanagida R
    J Appl Physiol (1985); 2012 Jan; 112(2):266-71. PubMed ID: 22052869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebral autoregulation in subjects adapted and not adapted to high altitude.
    Jansen GF; Krins A; Basnyat B; Bosch A; Odoom JA
    Stroke; 2000 Oct; 31(10):2314-8. PubMed ID: 11022056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effect of Data Length on the Assessment of Dynamic Cerebral Autoregulation with Transfer Function Analysis in Neurological ICU Patients.
    Zhang W; Lu H; Zhang P; Mo X; Ou A; Liu J; Zhong J
    Neurocrit Care; 2022 Feb; 36(1):21-29. PubMed ID: 34403122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of cerebral autoregulation: the quandary of quantification.
    Tzeng YC; Ainslie PN; Cooke WH; Peebles KC; Willie CK; MacRae BA; Smirl JD; Horsman HM; Rickards CA
    Am J Physiol Heart Circ Physiol; 2012 Sep; 303(6):H658-71. PubMed ID: 22821992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of non-invasive and invasive arterial blood pressure measurement for assessment of dynamic cerebral autoregulation.
    Petersen NH; Ortega-Gutierrez S; Reccius A; Masurkar A; Huang A; Marshall RS
    Neurocrit Care; 2014 Feb; 20(1):60-8. PubMed ID: 24452959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study.
    Ursino M; Giulioni M; Lodi CA
    J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebrovascular and cardiovascular variability interactions investigated through conditional joint transfer entropy in subjects prone to postural syncope.
    Bari V; De Maria B; Mazzucco CE; Rossato G; Tonon D; Nollo G; Faes L; Porta A
    Physiol Meas; 2017 May; 38(5):976-991. PubMed ID: 28245206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data.
    Depreitere B; Güiza F; Van den Berghe G; Schuhmann MU; Maier G; Piper I; Meyfroidt G
    J Neurosurg; 2014 Jun; 120(6):1451-7. PubMed ID: 24745709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertical shift in cerebral autoregulation curve: a graded head-up tilt study.
    Bondar RL; Dunphy PT; Moradshahi P; Dai H; Kassam MS; Stein F; Schneider S; Rubin M
    Can Aeronaut Space J; 1999 Mar; 45(1):3-8. PubMed ID: 11541909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.