These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 11604537)

  • 1. Implications of secondary structure prediction and amino acid sequence comparison of class I and class II phosphoribosyl diphosphate synthases on catalysis, regulation, and quaternary structure.
    Krath BN; Hove-Jensen B
    Protein Sci; 2001 Nov; 10(11):2317-24. PubMed ID: 11604537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel class III phosphoribosyl diphosphate synthase: structure and properties of the tetrameric, phosphate-activated, non-allosterically inhibited enzyme from Methanocaldococcus jannaschii.
    Kadziola A; Jepsen CH; Johansson E; McGuire J; Larsen S; Hove-Jensen B
    J Mol Biol; 2005 Dec; 354(4):815-28. PubMed ID: 16288921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Class II recombinant phosphoribosyl diphosphate synthase from spinach. Phosphate independence and diphosphoryl donor specificity.
    Krath BN; Hove-Jensen B
    J Biol Chem; 2001 May; 276(21):17851-6. PubMed ID: 11278632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organellar and cytosolic localization of four phosphoribosyl diphosphate synthase isozymes in spinach.
    Krath BN; Hove-Jensen B
    Plant Physiol; 1999 Feb; 119(2):497-506. PubMed ID: 9952445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface exposed amino acid differences between mesophilic and thermophilic phosphoribosyl diphosphate synthase.
    Hove-Jensen B; McGuire JN
    Eur J Biochem; 2004 Nov; 271(22):4526-33. PubMed ID: 15560793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase: a bent dimer defining the adenine specificity of the substrate ATP.
    Andersen RW; Leggio LL; Hove-Jensen B; Kadziola A
    Extremophiles; 2015 Mar; 19(2):407-15. PubMed ID: 25605536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic mechanism of uracil phosphoribosyltransferase from Escherichia coli and catalytic importance of the conserved proline in the PRPP binding site.
    Lundegaard C; Jensen KF
    Biochemistry; 1999 Mar; 38(11):3327-34. PubMed ID: 10079076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic residues Lys197 and Arg199 of Bacillus subtilis phosphoribosyl diphosphate synthase. Alanine-scanning mutagenesis of the flexible catalytic loop.
    Hove-Jensen B; Bentsen AK; Harlow KW
    FEBS J; 2005 Jul; 272(14):3631-9. PubMed ID: 16008562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for the function of Bacillus subtilis phosphoribosyl-pyrophosphate synthetase.
    Eriksen TA; Kadziola A; Bentsen AK; Harlow KW; Larsen S
    Nat Struct Biol; 2000 Apr; 7(4):303-8. PubMed ID: 10742175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. D-ribose-5-phosphate isomerase from spinach: heterologous overexpression, purification, characterization, and site-directed mutagenesis of the recombinant enzyme.
    Jung CH; Hartman FC; Lu TY; Larimer FW
    Arch Biochem Biophys; 2000 Jan; 373(2):409-17. PubMed ID: 10620366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae: combinatorial expression of the five PRS genes in Escherichia coli.
    Hove-Jensen B
    J Biol Chem; 2004 Sep; 279(39):40345-50. PubMed ID: 15280369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic and kinetic properties of a recombinant form of the flavin domain of spinach NADH: nitrate reductase.
    Quinn GB; Trimboli AJ; Prosser IM; Barber MJ
    Arch Biochem Biophys; 1996 Mar; 327(1):151-60. PubMed ID: 8615685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purine biosynthesis de novo in bovine retina: purification and characterization of amidophosphoribosyl transferase and phosphoribosyl pyrophosphate synthetase.
    Kian IA; Etingof RN
    Biochemistry (Mosc); 1999 Jun; 64(6):648-51. PubMed ID: 10395979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wild-type phosphoribosylpyrophosphate synthase (PRS) from Mycobacterium tuberculosis: a bacterial class II PRS?
    Breda A; Martinelli LK; Bizarro CV; Rosado LA; Borges CB; Santos DS; Basso LA
    PLoS One; 2012; 7(6):e39245. PubMed ID: 22745722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance.
    Hove-Jensen B; Andersen KR; Kilstrup M; Martinussen J; Switzer RL; Willemoës M
    Microbiol Mol Biol Rev; 2017 Mar; 81(1):. PubMed ID: 28031352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structures of Thermoplasma volcanium phosphoribosyl pyrophosphate synthetase bound to ribose-5-phosphate and ATP analogs.
    Cherney MM; Cherney LT; Garen CR; James MN
    J Mol Biol; 2011 Nov; 413(4):844-56. PubMed ID: 21963988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wild-type and feedback-resistant phosphoribosyl pyrophosphate synthetases from Bacillus amyloliquefaciens: purification, characterization, and application to increase purine nucleoside production.
    Zakataeva NP; Romanenkov DV; Skripnikova VS; Vitushkina MV; Livshits VA; Kivero AD; Novikova AE
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):2023-33. PubMed ID: 22083279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of human phosphoribosylpyrophosphate synthetase 1 reveals a novel allosteric site.
    Li S; Lu Y; Peng B; Ding J
    Biochem J; 2007 Jan; 401(1):39-47. PubMed ID: 16939420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of Escherichia coli phosphoribosylpyrophosphate synthetase by the 2',3'-dialdehyde derivative of ATP. Identification of active site lysines.
    Hilden I; Hove-Jensen B; Harlow KW
    J Biol Chem; 1995 Sep; 270(35):20730-6. PubMed ID: 7657655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and kinetic studies of the allosteric transition in Sulfolobus solfataricus uracil phosphoribosyltransferase: Permanent activation by engineering of the C-terminus.
    Christoffersen S; Kadziola A; Johansson E; Rasmussen M; Willemoës M; Jensen KF
    J Mol Biol; 2009 Oct; 393(2):464-77. PubMed ID: 19683539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.