BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 11605036)

  • 1. Kinetics of neuroendocrine differentiation in an androgen-dependent human prostate xenograft model.
    Jongsma J; Oomen MH; Noordzij MA; Van Weerden WM; Martens GJ; van der Kwast TH; Schröder FH; van Steenbrugge GJ
    Am J Pathol; 1999 Feb; 154(2):543-51. PubMed ID: 10027412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oncofetal protein glypican-3 is a biomarker and critical regulator of function for neuroendocrine cells in prostate cancer.
    Butler W; Xu L; Zhou Y; Cheng Q; Hauck JS; He Y; Marek R; Hartman Z; Cheng L; Yang Q; Wang ME; Chen M; Zhang H; Armstrong AJ; Huang J
    J Pathol; 2023 May; 260(1):43-55. PubMed ID: 36752189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc finger protein‑like 1 is a novel neuroendocrine biomarker for prostate cancer.
    Masud N; Aldahish A; Iczkowski KA; Kale A; Shah GV
    Int J Oncol; 2023 Mar; 62(3):. PubMed ID: 36799165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNA-1205 Regulation of FRYL in Prostate Cancer.
    Naidoo M; Levine F; Gillot T; Orunmuyi AT; Olapade-Olaopa EO; Ali T; Krampis K; Pan C; Dorsaint P; Sboner A; Ogunwobi OO
    Front Cell Dev Biol; 2021; 9():647485. PubMed ID: 34386489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Androgen Receptor Signaling and the Emergence of Lethal Neuroendocrine Prostate Cancer With the Treatment-Induced Suppression of the Androgen Receptor: A Literature Review.
    Dhavale M; Abdelaal MK; Alam ABMN; Blazin T; Mohammed LM; Prajapati D; Ballestas NP; Mostafa JA
    Cureus; 2021 Feb; 13(2):e13402. PubMed ID: 33754118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The inhibitory effect of melatonin on human prostate cancer.
    Shen D; Ju L; Zhou F; Yu M; Ma H; Zhang Y; Liu T; Xiao Y; Wang X; Qian K
    Cell Commun Signal; 2021 Mar; 19(1):34. PubMed ID: 33722247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroendocrine differentiation in usual-type prostatic adenocarcinoma: Molecular characterization and clinical significance.
    Kaur H; Samarska I; Lu J; Faisal F; Maughan BL; Murali S; Asrani K; Alshalalfa M; Antonarakis ES; Epstein JI; Joshu CE; Schaeffer EM; Mosquera JM; Lotan TL
    Prostate; 2020 Sep; 80(12):1012-1023. PubMed ID: 32649013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurotensin and its receptors mediate neuroendocrine transdifferentiation in prostate cancer.
    Zhu S; Tian H; Niu X; Wang J; Li X; Jiang N; Wen S; Chen X; Ren S; Xu C; Chang C; Flores-Morales A; Shang Z; Sun Y; Niu Y
    Oncogene; 2019 Jun; 38(24):4875-4884. PubMed ID: 30770901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Androgen receptor-dependent and -independent mechanisms driving prostate cancer progression: Opportunities for therapeutic targeting from multiple angles.
    Hoang DT; Iczkowski KA; Kilari D; See W; Nevalainen MT
    Oncotarget; 2017 Jan; 8(2):3724-3745. PubMed ID: 27741508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-Myc Induces an EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer.
    Dardenne E; Beltran H; Benelli M; Gayvert K; Berger A; Puca L; Cyrta J; Sboner A; Noorzad Z; MacDonald T; Cheung C; Yuen KS; Gao D; Chen Y; Eilers M; Mosquera JM; Robinson BD; Elemento O; Rubin MA; Demichelis F; Rickman DS
    Cancer Cell; 2016 Oct; 30(4):563-577. PubMed ID: 27728805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GRK3 is a direct target of CREB activation and regulates neuroendocrine differentiation of prostate cancer cells.
    Sang M; Hulsurkar M; Zhang X; Song H; Zheng D; Zhang Y; Li M; Xu J; Zhang S; Ittmann M; Li W
    Oncotarget; 2016 Jul; 7(29):45171-45185. PubMed ID: 27191986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed Neuroendocrine-Nonneuroendocrine Neoplasms (MiNENs): Unifying the Concept of a Heterogeneous Group of Neoplasms.
    La Rosa S; Sessa F; Uccella S
    Endocr Pathol; 2016 Dec; 27(4):284-311. PubMed ID: 27169712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. REST reduction is essential for hypoxia-induced neuroendocrine differentiation of prostate cancer cells by activating autophagy signaling.
    Lin TP; Chang YT; Lee SY; Campbell M; Wang TC; Shen SH; Chung HJ; Chang YH; Chiu AW; Pan CC; Lin CH; Chu CY; Kung HJ; Cheng CY; Chang PC
    Oncotarget; 2016 May; 7(18):26137-51. PubMed ID: 27034167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Androgen-targeted therapy-induced epithelial mesenchymal plasticity and neuroendocrine transdifferentiation in prostate cancer: an opportunity for intervention.
    Nouri M; Ratther E; Stylianou N; Nelson CC; Hollier BG; Williams ED
    Front Oncol; 2014; 4():370. PubMed ID: 25566507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prostate cancer with Paneth cell-like neuroendocrine differentiation has recognizable histomorphology and harbors AURKA gene amplification.
    Park K; Chen Z; MacDonald TY; Siddiqui J; Ye H; Erbersdobler A; Shevchuk MM; Robinson BD; Sanda MG; Chinnaiyan AM; Beltran H; Rubin MA; Mosquera JM
    Hum Pathol; 2014 Oct; 45(10):2136-43. PubMed ID: 25128228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer.
    Mosquera JM; Beltran H; Park K; MacDonald TY; Robinson BD; Tagawa ST; Perner S; Bismar TA; Erbersdobler A; Dhir R; Nelson JB; Nanus DM; Rubin MA
    Neoplasia; 2013 Jan; 15(1):1-10. PubMed ID: 23358695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mash1 expression is induced in neuroendocrine prostate cancer upon the loss of Foxa2.
    Gupta A; Yu X; Case T; Paul M; Shen MM; Kaestner KH; Matusik RJ
    Prostate; 2013 May; 73(6):582-9. PubMed ID: 23060003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sphingosine kinase-1 is central to androgen-regulated prostate cancer growth and survival.
    Dayon A; Brizuela L; Martin C; Mazerolles C; Pirot N; Doumerc N; Nogueira L; Golzio M; Teissié J; Serre G; Rischmann P; Malavaud B; Cuvillier O
    PLoS One; 2009 Nov; 4(11):e8048. PubMed ID: 19956567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Up-regulation of neuroendocrine differentiation in prostate cancer after androgen deprivation therapy, degree and androgen independence.
    Ito T; Yamamoto S; Ohno Y; Namiki K; Aizawa T; Akiyama A; Tachibana M
    Oncol Rep; 2001; 8(6):1221-4. PubMed ID: 11605036
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.