These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 11605406)

  • 21. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex.
    Abe M; Kobayashi Y; Yamamoto S; Daimon Y; Yamaguchi A; Ikeda Y; Ichinoki H; Notaguchi M; Goto K; Araki T
    Science; 2005 Aug; 309(5737):1052-6. PubMed ID: 16099979
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The petunia AGL6 gene has a SEPALLATA-like function in floral patterning.
    Rijpkema AS; Zethof J; Gerats T; Vandenbussche M
    Plant J; 2009 Oct; 60(1):1-9. PubMed ID: 19453449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integration of spatial and temporal information during floral induction in Arabidopsis.
    Wigge PA; Kim MC; Jaeger KE; Busch W; Schmid M; Lohmann JU; Weigel D
    Science; 2005 Aug; 309(5737):1056-9. PubMed ID: 16099980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Genes controlling inflorescence structure and their possible role in evolution].
    Ezhova TA; Skliarova OA
    Ontogenez; 2001; 32(6):462-70. PubMed ID: 11785255
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [MADS-box genes controlling inflorescence morphogenesis in sunflower].
    Shul'ga OA; Shennikova AV; Angenent GS; Skriabin KG
    Ontogenez; 2008; 39(1):4-7. PubMed ID: 18409375
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Over-expression of SOB5 suggests the involvement of a novel plant protein in cytokinin-mediated development.
    Zhang J; Wrage EL; Vankova R; Malbeck J; Neff MM
    Plant J; 2006 Jun; 46(5):834-48. PubMed ID: 16709198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient production of male and female sterile plants by expression of a chimeric repressor in Arabidopsis and rice.
    Mitsuda N; Hiratsu K; Todaka D; Nakashima K; Yamaguchi-Shinozaki K; Ohme-Takagi M
    Plant Biotechnol J; 2006 May; 4(3):325-32. PubMed ID: 17147638
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pistillata--duplications as a mode for floral diversification in (Basal) asterids.
    Viaene T; Vekemans D; Irish VF; Geeraerts A; Huysmans S; Janssens S; Smets E; Geuten K
    Mol Biol Evol; 2009 Nov; 26(11):2627-45. PubMed ID: 19679752
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum.
    Crawford BC; Nath U; Carpenter R; Coen ES
    Plant Physiol; 2004 May; 135(1):244-53. PubMed ID: 15122032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell-specific regulation of a Brassica napus CMS-associated gene by a nuclear restorer with related effects on a floral homeotic gene promoter.
    Geddy R; Mahé L; Brown GG
    Plant J; 2005 Feb; 41(3):333-45. PubMed ID: 15659093
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Apical wilting and petiole xylem vessel diameter of the rms2 branching mutant of pea are shoot controlled and independent of a long-distance signal regulating branching.
    Dodd IC; Ferguson BJ; Beveridge CA
    Plant Cell Physiol; 2008 May; 49(5):791-800. PubMed ID: 18378528
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Genetic control of the wavy shoots character in radish Raphanus sativus L].
    Karpinskaia LI; Buzovkina IS
    Genetika; 2005 Sep; 41(9):1251-8. PubMed ID: 16240637
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid.
    Tsai WC; Kuoh CS; Chuang MH; Chen WH; Chen HH
    Plant Cell Physiol; 2004 Jul; 45(7):831-44. PubMed ID: 15295066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzyme I NPr, NPr and IIA Ntr are involved in regulation of the poly-beta-hydroxybutyrate biosynthetic genes in Azotobacter vinelandii.
    Noguez R; Segura D; Moreno S; Hernandez A; Juarez K; Espín G
    J Mol Microbiol Biotechnol; 2008; 15(4):244-54. PubMed ID: 17878711
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ROXY1, a member of the plant glutaredoxin family, is required for petal development in Arabidopsis thaliana.
    Xing S; Rosso MG; Zachgo S
    Development; 2005 Apr; 132(7):1555-65. PubMed ID: 15728668
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Floral development and molecular phylogeny support the generic status of Tasmannia (Winteraceae).
    Doust AN; Drinnan AN
    Am J Bot; 2004 Mar; 91(3):321-31. PubMed ID: 21653389
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of initial cells in maize anther morphogenesis.
    Dawe RK; Freeling M
    Development; 1992 Dec; 116(4):1077-85. PubMed ID: 1295730
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Laticifers in stamens of Papaver somniferum L.
    Nessler CL; Mahlberg PG
    Planta; 1976 Jan; 129(1):83-5. PubMed ID: 24430820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Experiments on the phase shifts of endogenous rhythms: petal movement of Kalanchoe blossfeldiana].
    Engelmann W; Honegger HW
    Z Naturforsch B; 1967 Feb; 22(2):200-4. PubMed ID: 4384718
    [No Abstract]   [Full Text] [Related]  

  • 40. Editorial: Petal Development: From Cell Biology to EvoDevo.
    Huang T; Kramer EM; Lin D
    Front Plant Sci; 2022; 13():951442. PubMed ID: 35783954
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.