These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 11605796)

  • 21. Thermal quenching of thermoluminescence in natural quartz.
    Nanjundaswamy R; Lepper K; McKeever SW
    Radiat Prot Dosimetry; 2002; 100(1-4):305-8. PubMed ID: 12382884
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simple methods to analyse thermoluminescence glow curves assuming arbitrary recombination-retrapping rates.
    Gómez-Ros JM; Furetta C; Correcher V
    Radiat Prot Dosimetry; 2006; 119(1-4):339-43. PubMed ID: 16735569
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermoluminescent studies of GdAlO
    Nolasco-Altamirano D; Barrera-Angeles AA; Lemus-Ruiz J; Ugalde-Valdes MA; Alonso-Sotolongo A; Gutiérrez-Marquez JG; Alvarez-Romero R; Zarate-Medina J; Rivera-Montalvo T
    Appl Radiat Isot; 2022 Aug; 186():110268. PubMed ID: 35550227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computerized glow curve deconvolution (CGCD): A comparison using asymptotic vs rational approximation in thermoluminescence kinetic models.
    Wazir-Ud-Din M; Ur-Rehman S; Mahmood MM; Ahmad K; Hayat S; Siddique MT; Kakakhel MB; Mirza SM
    Appl Radiat Isot; 2022 Jan; 179():110014. PubMed ID: 34785443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermoluminescence glow curve deconvolution and kinetic parameter determination of samarium-doped lithium borosilicate glass.
    Abdelmonem A; Alazab HA; Salama E
    Luminescence; 2022 Feb; 37(2):302-309. PubMed ID: 34856644
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermoluminescence glow curve deconvolution and its statistical analysis using the flexibility of spreadsheet programs.
    van Dijk JW
    Radiat Prot Dosimetry; 2006; 119(1-4):332-8. PubMed ID: 16731693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of the emission spectra of LiF:Mg,Ti (TLD-100) during thermoluminescence.
    Biderman S; Horowitz Y; Oster L
    Radiat Prot Dosimetry; 2002; 100(1-4):369-72. PubMed ID: 12382900
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The deconvolution of thermoluminescence glow-curves using general expressions derived from the one trap-one recombination (OTOR) level model.
    Sadek AM; Eissa HM; Basha AM; Carinou E; Askounis P; Kitis G
    Appl Radiat Isot; 2015 Jan; 95():214-221. PubMed ID: 25464201
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of the BeO thermoluminescent glow curve by the deconvolution method.
    Baltezar RM; Nieto JA
    Appl Radiat Isot; 2019 Aug; 150():53-56. PubMed ID: 31121488
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Orthopaedic grade ultra-high molecular weight polyethylene: some features of the main thermoluminescence glow curve.
    Chithambo ML
    Radiat Prot Dosimetry; 2006; 119(1-4):157-60. PubMed ID: 16815883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. STUDY OF EFFECT OF CONSECUTIVE HEATING ON THERMOLUMINESCENCE GLOW CURVES OF MULTI-ELEMENT TL DOSEMETER IN HOT GAS-BASED READER SYSTEM.
    Pathan MS; Pradhan SM; Datta D; Selvam TP
    Radiat Prot Dosimetry; 2019 Dec; 187(4):509-517. PubMed ID: 31650175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermoluminescence characterization of nanocrystalline powder of SrSO
    Jamkhaneh KB; Rezaee Ebrahim Saraee K
    Appl Radiat Isot; 2020 Jun; 160():109128. PubMed ID: 32351221
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental investigation of the 100 keV X-ray dose response of the high-temperature thermoluminescence in LiF:Mg,Ti (TLD-100): theoretical interpretation using the unified interaction model.
    Livingstone J; Horowitz YS; Oster L; Datz H; Lerch M; Rosenfeld A; Horowitz A
    Radiat Prot Dosimetry; 2010 Mar; 138(4):320-33. PubMed ID: 19934115
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies of thermoluminescence kinetic parameters of polymer pencil lead graphite under photon exposures.
    Khandaker MU; Mat Nawi SN; Bradley DA; Lam SE; Abdul Sani SF; Sulieman A
    Appl Radiat Isot; 2021 Aug; 174():109757. PubMed ID: 33990033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Properties of the 4.45 eV optical absorption band in LiF:Mg,Ti.
    Nail I; Oster L; Horowitz YS; Biderman S; Belaish Y
    Radiat Prot Dosimetry; 2006; 119(1-4):244-7. PubMed ID: 16644966
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermoluminescence glow-curve deconvolution using analytical expressions: A unified presentation.
    Peng J; Kitis G; Sadek AM; Karsu Asal EC; Li Z
    Appl Radiat Isot; 2021 Feb; 168():109440. PubMed ID: 33268224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heating rate effect on thermoluminescence glow curves of LiF:Mg,Cu,P+PTFE phosphor.
    Cruz-Zaragoza E; González PR; Azorín J; Furetta C
    Appl Radiat Isot; 2011 Oct; 69(10):1369-73. PubMed ID: 21683603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The use of computerised glow curve analysis will optimise personal thermoluminescence dosimetry measurements. Opposing the proposition.
    Pradhan AS; Yoder RC
    Radiat Prot Dosimetry; 2002; 102(3):274-7. PubMed ID: 12430967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correlation between OSL and the distribution of TL traps in Al2O3:C.
    Akselrod AE; Akselrod MS
    Radiat Prot Dosimetry; 2002; 100(1-4):217-20. PubMed ID: 12382863
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermoluminescence glow curve deconvolution for discrete and continuous trap distributions.
    Benavente JF; Gómez-Ros JM; Romero AM
    Appl Radiat Isot; 2019 Nov; 153():108843. PubMed ID: 31404764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.