These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11606020)

  • 1. The use of electromyogram biofeedback to reduce Trendelenburg gait.
    Petrofsky JS
    Eur J Appl Physiol; 2001 Sep; 85(5):491-5. PubMed ID: 11606020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microprocessor-based gait analysis system to retrain Trendelenburg gait.
    Petrofsky JS
    Med Biol Eng Comput; 2001 Jan; 39(1):140-3. PubMed ID: 11214266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of EMG biofeedback training of gluteus maximus muscle on gait parameters in incomplete spinal cord injury.
    Govil K; Noohu MM
    NeuroRehabilitation; 2013; 33(1):147-52. PubMed ID: 23949032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Balance training improves static stability and gait in chronic incomplete spinal cord injury subjects: a pilot study.
    Tamburella F; Scivoletto G; Molinari M
    Eur J Phys Rehabil Med; 2013 Jun; 49(3):353-64. PubMed ID: 23486301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromuscular electrical stimulation of the gluteus medius improves the gait of children with cerebral palsy.
    Al-Abdulwahab SS; Al-Khatrawi WM
    NeuroRehabilitation; 2009; 24(3):209-17. PubMed ID: 19458427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofeedback for robotic gait rehabilitation.
    Lünenburger L; Colombo G; Riener R
    J Neuroeng Rehabil; 2007 Jan; 4():1. PubMed ID: 17244363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury.
    Israel JF; Campbell DD; Kahn JH; Hornby TG
    Phys Ther; 2006 Nov; 86(11):1466-78. PubMed ID: 17079746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of orthotic gait training with powered hip orthosis on walking in paraplegic patients.
    Arazpour M; Bani MA; Hutchins SW; Curran S; Javanshir MA; Mousavi ME
    Disabil Rehabil Assist Technol; 2014 May; 9(3):226-30. PubMed ID: 24749556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactive virtual feedback improves gait motor imagery after spinal cord injury: An exploratory study.
    Roosink M; Robitaille N; Jackson PL; Bouyer LJ; Mercier C
    Restor Neurol Neurosci; 2016; 34(2):227-35. PubMed ID: 26890097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromyographic biofeedback for gait training after stroke.
    Bradley L; Hart BB; Mandana S; Flowers K; Riches M; Sanderson P
    Clin Rehabil; 1998 Feb; 12(1):11-22. PubMed ID: 9549021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory supported FES control in gait training of incomplete spinal cord injury persons.
    Cikajlo I; Matjacić Z; Bajd T; Futami R
    Artif Organs; 2005 Jun; 29(6):459-61. PubMed ID: 15926982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofeedback effect on electromyography responses in patients with spinal cord injury.
    Brucker BS; Bulaeva NV
    Arch Phys Med Rehabil; 1996 Feb; 77(2):133-7. PubMed ID: 8607736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of a limited trial of walking training using body weight support and a treadmill on the gait characteristics of an individual with chronic, incomplete spinal cord injury.
    Leahy TE
    Physiother Theory Pract; 2010 Oct; 26(7):483-9. PubMed ID: 20649496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in gait and plantar foot loading upon using vibrotactile wearable biofeedback system in patients with stroke.
    Ma CZ; Zheng YP; Lee WC
    Top Stroke Rehabil; 2018 Jan; 25(1):20-27. PubMed ID: 28950803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A foot drop correcting FES envelope design method using tibialis anterior EMG during healthy gait with a new walking speed control strategy.
    Chen M; Wang QB; Lou XX; Xu K; Zheng XX
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4906-9. PubMed ID: 21096659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofeedback for Gait Retraining Based on Real-Time Estimation of Tibiofemoral Joint Contact Forces.
    Pizzolato C; Reggiani M; Saxby DJ; Ceseracciu E; Modenese L; Lloyd DG
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1612-1621. PubMed ID: 28436878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supported treadmill ambulation training after spinal cord injury: a pilot study.
    Protas EJ; Holmes SA; Qureshy H; Johnson A; Lee D; Sherwood AM
    Arch Phys Med Rehabil; 2001 Jun; 82(6):825-31. PubMed ID: 11387590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locomotor training improves premotoneuronal control after chronic spinal cord injury.
    Knikou M; Mummidisetty CK
    J Neurophysiol; 2014 Jun; 111(11):2264-75. PubMed ID: 24598526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Task-oriented biofeedback to improve gait in individuals with chronic stroke: motor learning approach.
    Jonsdottir J; Cattaneo D; Recalcati M; Regola A; Rabuffetti M; Ferrarin M; Casiraghi A
    Neurorehabil Neural Repair; 2010 Jun; 24(5):478-85. PubMed ID: 20053951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.