BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 11606051)

  • 1. Coparalogy: physical and functional clusterings in the human genome.
    Popovici C; Leveugle M; Birnbaum D; Coulier F
    Biochem Biophys Res Commun; 2001 Oct; 288(2):362-70. PubMed ID: 11606051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homeobox gene clusters and the human paralogy map.
    Popovici C; Leveugle M; Birnbaum D; Coulier F
    FEBS Lett; 2001 Mar; 491(3):237-42. PubMed ID: 11240134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved synteny between the Ciona genome and human paralogons identifies large duplication events in the molecular evolution of the insulin-relaxin gene family.
    Olinski RP; Lundin LG; Hallböök F
    Mol Biol Evol; 2006 Jan; 23(1):10-22. PubMed ID: 16135778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An insight into the evolutionary history of human MHC paralogon.
    Naz R; Tahir S; Abbasi AA
    Mol Phylogenet Evol; 2017 May; 110():1-6. PubMed ID: 28249742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fourfold paralogy regions on human HOX-bearing chromosomes: role of ancient segmental duplications in the evolution of vertebrate genome.
    Asrar Z; Haq F; Abbasi AA
    Mol Phylogenet Evol; 2013 Mar; 66(3):737-47. PubMed ID: 23142696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating large-scale phylogenetic datasets to dissect the ancient evolutionary history of vertebrate genome.
    Ambreen S; Khalil F; Abbasi AA
    Mol Phylogenet Evol; 2014 Sep; 78():1-13. PubMed ID: 24821622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary history of the human multigene families reveals widespread gene duplications throughout the history of animals.
    Pervaiz N; Shakeel N; Qasim A; Zehra R; Anwar S; Rana N; Xue Y; Zhang Z; Bao Y; Abbasi AA
    BMC Evol Biol; 2019 Jun; 19(1):128. PubMed ID: 31221090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenetic and chromosomal analyses of multiple gene families syntenic with vertebrate Hox clusters.
    Sundström G; Larsson TA; Larhammar D
    BMC Evol Biol; 2008 Sep; 8():254. PubMed ID: 18803835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications.
    Siegel N; Hoegg S; Salzburger W; Braasch I; Meyer A
    BMC Genomics; 2007 Sep; 8():312. PubMed ID: 17822543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling ancient segmental duplication events in human genome by phylogenetic analysis of multigene families residing on HOX-cluster paralogons.
    Abbasi AA
    Mol Phylogenet Evol; 2010 Nov; 57(2):836-48. PubMed ID: 20696259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversification of four human HOX gene clusters by step-wise evolution rather than ancient whole-genome duplications.
    Abbasi AA
    Dev Genes Evol; 2015 Nov; 225(6):353-7. PubMed ID: 26481129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ParaDB: a tool for paralogy mapping in vertebrate genomes.
    Leveugle M; Prat K; Perrier N; Birnbaum D; Coulier F
    Nucleic Acids Res; 2003 Jan; 31(1):63-7. PubMed ID: 12519948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of lamprey and hagfish genes reveals a complex history of gene duplications during early vertebrate evolution.
    Escriva H; Manzon L; Youson J; Laudet V
    Mol Biol Evol; 2002 Sep; 19(9):1440-50. PubMed ID: 12200472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ancient large-scale genome duplications: phylogenetic and linkage analyses shed light on chordate genome evolution.
    Pébusque MJ; Coulier F; Birnbaum D; Pontarotti P
    Mol Biol Evol; 1998 Sep; 15(9):1145-59. PubMed ID: 9729879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary significance of intra-genome duplications on human chromosomes.
    Endo T; Imanishi T; Gojobori T; Inoko H
    Gene; 1997 Dec; 205(1-2):19-27. PubMed ID: 9461376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extensive genomic duplication during early chordate evolution.
    McLysaght A; Hokamp K; Wolfe KH
    Nat Genet; 2002 Jun; 31(2):200-4. PubMed ID: 12032567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic analyses of human 1/2/8/20 paralogons suggest segmental duplications during animal evolution.
    Haq F; Saeed U; Khalid R; Qasim M; Mehmood M
    3 Biotech; 2019 Jun; 9(6):233. PubMed ID: 31139548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic investigation of human FGFR-bearing paralogons favors piecemeal duplication theory of vertebrate genome evolution.
    Ajmal W; Khan H; Abbasi AA
    Mol Phylogenet Evol; 2014 Dec; 81():49-60. PubMed ID: 25245952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertebrate genome evolution and the zebrafish gene map.
    Postlethwait JH; Yan YL; Gates MA; Horne S; Amores A; Brownlie A; Donovan A; Egan ES; Force A; Gong Z; Goutel C; Fritz A; Kelsh R; Knapik E; Liao E; Paw B; Ransom D; Singer A; Thomson M; Abduljabbar TS; Yelick P; Beier D; Joly JS; Larhammar D; Rosa F; Westerfield M; Zon LI; Johnson SL; Talbot WS
    Nat Genet; 1998 Apr; 18(4):345-9. PubMed ID: 9537416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolution of the calpain family as reflected in paralogous chromosome regions.
    Jékely G; Friedrich P
    J Mol Evol; 1999 Aug; 49(2):272-81. PubMed ID: 10441678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.