These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 11606199)
21. Molecular structure of the NADH/UDP-glucose abortive complex of UDP-galactose 4-epimerase from Escherichia coli: implications for the catalytic mechanism. Thoden JB; Frey PA; Holden HM Biochemistry; 1996 Apr; 35(16):5137-44. PubMed ID: 8611497 [TBL] [Abstract][Full Text] [Related]
22. Structural analysis of the H166G site-directed mutant of galactose-1-phosphate uridylyltransferase complexed with either UDP-glucose or UDP-galactose: detailed description of the nucleotide sugar binding site. Thoden JB; Ruzicka FJ; Frey PA; Rayment I; Holden HM Biochemistry; 1997 Feb; 36(6):1212-22. PubMed ID: 9063869 [TBL] [Abstract][Full Text] [Related]
23. The liquidlike ordering of lipid A-diphosphate colloidal crystals: the influence of Ca2+, Mg2+, Na+, and K+ on the ordering of colloidal suspensions of lipid A-diphosphate in aqueous solutions. Faunce CA; Reichelt H; Paradies HH; Quitschau P; Zimmermann K J Chem Phys; 2005 Jun; 122(21):214727. PubMed ID: 15974782 [TBL] [Abstract][Full Text] [Related]
24. Discovery and Biochemical Characterization of UDP-Glucose Dehydrogenase from Akkermansia muciniphila. Wei S; Zhang XY; Sun Y; Conway LP; Liu L Protein Pept Lett; 2017; 24(8):735-741. PubMed ID: 28741460 [TBL] [Abstract][Full Text] [Related]
26. Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis. Vaisman A; Ling H; Woodgate R; Yang W EMBO J; 2005 Sep; 24(17):2957-67. PubMed ID: 16107880 [TBL] [Abstract][Full Text] [Related]
27. The C-glycosyltransferase IroB from pathogenic Escherichia coli: identification of residues required for efficient catalysis. Foshag D; Campbell C; Pawelek PD Biochim Biophys Acta; 2014 Sep; 1844(9):1619-30. PubMed ID: 24960592 [TBL] [Abstract][Full Text] [Related]
28. Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 3. Changing metal specificity and the pH profile by site-directed mutagenesis. van Tilbeurgh H; Jenkins J; Chiadmi M; Janin J; Wodak SJ; Mrabet NT; Lambeir AM Biochemistry; 1992 Jun; 31(24):5467-71. PubMed ID: 1610793 [TBL] [Abstract][Full Text] [Related]
29. Blood group B galactosyltransferase: insights into substrate binding from NMR experiments. Angulo J; Langpap B; Blume A; Biet T; Meyer B; Krishna NR; Peters H; Palcic MM; Peters T J Am Chem Soc; 2006 Oct; 128(41):13529-38. PubMed ID: 17031966 [TBL] [Abstract][Full Text] [Related]
30. Dual divalent cation requirement for activation of pyruvate kinase; essential roles of both enzyme- and nucleotide-bound metal ions. Gupta RK; Oesterling RM Biochemistry; 1976 Jun; 15(13):2881-7. PubMed ID: 7293 [TBL] [Abstract][Full Text] [Related]
31. Molecular dynamics simulation study of the "stay or leave" problem for two magnesium ions in gene transcription. Wu S Proteins; 2017 Jun; 85(6):1002-1007. PubMed ID: 28205291 [TBL] [Abstract][Full Text] [Related]
32. Structural basis for the function of Clostridium difficile toxin B. Reinert DJ; Jank T; Aktories K; Schulz GE J Mol Biol; 2005 Sep; 351(5):973-81. PubMed ID: 16054646 [TBL] [Abstract][Full Text] [Related]
33. A structural basis for metal ion mutagenicity and nucleotide selectivity in human DNA polymerase beta. Pelletier H; Sawaya MR; Wolfle W; Wilson SH; Kraut J Biochemistry; 1996 Oct; 35(39):12762-77. PubMed ID: 8841119 [TBL] [Abstract][Full Text] [Related]
34. Interactions of the products, 8-oxo-dGMP, dGMP, and pyrophosphate with the MutT nucleoside triphosphate pyrophosphohydrolase. Saraswat V; Massiah MA; Lopez G; Amzel LM; Mildvan AS Biochemistry; 2002 Dec; 41(52):15566-77. PubMed ID: 12501185 [TBL] [Abstract][Full Text] [Related]
35. Structural studies of metal binding by inositol monophosphatase: evidence for two-metal ion catalysis. Bone R; Frank L; Springer JP; Atack JR Biochemistry; 1994 Aug; 33(32):9468-76. PubMed ID: 8068621 [TBL] [Abstract][Full Text] [Related]
36. Biotransformation of uridine monophosphate (UMP) and glucose to uridine diphosphate-glucose (UDPG) by Candida saitoana KCTC7249 cells. Ko JH; Shin HS; Kim YS; Lee DS; Kim CH Appl Biochem Biotechnol; 1996 Jul; 60(1):41-8. PubMed ID: 8756614 [TBL] [Abstract][Full Text] [Related]
37. Kinetic and mechanistic analysis of nonenzymatic, template-directed oligoribonucleotide ligation. Rohatgi R; Bartel DP; Szostak JW J Am Chem Soc; 1996 Apr; 118(14):3332-9. PubMed ID: 11539267 [TBL] [Abstract][Full Text] [Related]
38. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide phosphate specific malic enzyme, depending on whether magnesium ion or manganese ion serves as divalent cation. Brown DA; Cook RA Biochemistry; 1981 Apr; 20(9):2503-12. PubMed ID: 7016178 [TBL] [Abstract][Full Text] [Related]
39. Experimental and theoretical characterization of the high-affinity cation-binding site of the purple membrane. Pardo L; Sepulcre F; Cladera J; Duñach M; Labarta A; Tejada J; Padrós E Biophys J; 1998 Aug; 75(2):777-84. PubMed ID: 9675179 [TBL] [Abstract][Full Text] [Related]
40. Remarkable affinity and selectivity for Cs+ and uranyl (UO22+) binding to the manganese site of the apo-water oxidation complex of photosystem II. Ananyev GM; Murphy A; Abe Y; Dismukes GC Biochemistry; 1999 Jun; 38(22):7200-9. PubMed ID: 10353831 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]