These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 11606288)

  • 1. Solid-state NMR structure determination of melittin in a lipid environment.
    Lam YH; Wassall SR; Morton CJ; Smith R; Separovic F
    Biophys J; 2001 Nov; 81(5):2752-61. PubMed ID: 11606288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic structure of vesicle-bound melittin in a variety of lipid chain lengths by solid-state NMR.
    Toraya S; Nishimura K; Naito A
    Biophys J; 2004 Nov; 87(5):3323-35. PubMed ID: 15339796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and orientation of the pore-forming peptide, melittin, in lipid bilayers.
    Smith R; Separovic F; Milne TJ; Whittaker A; Bennett FM; Cornell BA; Makriyannis A
    J Mol Biol; 1994 Aug; 241(3):456-66. PubMed ID: 8064858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state (31)P and (13)C NMR spectroscopy.
    Naito A; Nagao T; Norisada K; Mizuno T; Tuzi S; Saitô H
    Biophys J; 2000 May; 78(5):2405-17. PubMed ID: 10777736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-state NMR conformational studies of a melittin-inhibitor complex.
    Lam YH; Morton CJ; Separovic F
    Eur Biophys J; 2002 Sep; 31(5):383-8. PubMed ID: 12202915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vesicle-bound conformation of melittin: transferred nuclear Overhauser enhancement analysis in the presence of perdeuterated phosphatidylcholine vesicles.
    Okada A; Wakamatsu K; Miyazawa T; Higashijima T
    Biochemistry; 1994 Aug; 33(32):9438-46. PubMed ID: 8068618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Structure and Orientation of Melittin Bound to Acidic Lipid Bilayers, As Revealed by Solid-State NMR and Molecular Dynamics Simulation.
    Norisada K; Javkhlantugs N; Mishima D; Kawamura I; Saitô H; Ueda K; Naito A
    J Phys Chem B; 2017 Mar; 121(8):1802-1811. PubMed ID: 28165239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and orientation of antibiotic peptide alamethicin in phospholipid bilayers as revealed by chemical shift oscillation analysis of solid state nuclear magnetic resonance and molecular dynamics simulation.
    Nagao T; Mishima D; Javkhlantugs N; Wang J; Ishioka D; Yokota K; Norisada K; Kawamura I; Ueda K; Naito A
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2789-98. PubMed ID: 26248014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological behavior of lipid bilayers induced by melittin near the phase transition temperature.
    Toraya S; Nagao T; Norisada K; Tuzi S; Saitô H; Izumi S; Naito A
    Biophys J; 2005 Nov; 89(5):3214-22. PubMed ID: 16113109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane.
    Bernèche S; Nina M; Roux B
    Biophys J; 1998 Oct; 75(4):1603-18. PubMed ID: 9746504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure, location, and lipid perturbations of melittin at the membrane interface.
    Hristova K; Dempsey CE; White SH
    Biophys J; 2001 Feb; 80(2):801-11. PubMed ID: 11159447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of the action of melittin on sphingomyelin and phosphatidylcholine bilayers.
    Pott T; Paternostre M; Dufourc EJ
    Eur Biophys J; 1998; 27(3):237-45. PubMed ID: 9615395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of proline-14 to the structure and actions of melittin.
    Dempsey CE; Bazzo R; Harvey TS; Syperek I; Boheim G; Campbell ID
    FEBS Lett; 1991 Apr; 281(1-2):240-4. PubMed ID: 2015901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of 2,2,2-trifluoroethanol with melittin.
    Neuman RC; Gerig JT
    Magn Reson Chem; 2009 Nov; 47(11):925-31. PubMed ID: 19634131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-state NMR and simulation studies of equinatoxin II N-terminus interaction with lipid bilayers.
    Lam YH; Hung A; Norton RS; Separovic F; Watts A
    Proteins; 2010 Mar; 78(4):858-72. PubMed ID: 19847922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalised bilayer perturbation from peptide helix dimerisation at membrane surfaces: vesicle lysis induced by disulphide-dimerised melittin analogues.
    Takei J; Remenyi A; Dempsey CE
    FEBS Lett; 1999 Jan; 442(1):11-4. PubMed ID: 9923594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of proline upon the folding and geometry of the WALP19 transmembrane peptide.
    Thomas R; Vostrikov VV; Greathouse DV; Koeppe RE
    Biochemistry; 2009 Dec; 48(50):11883-91. PubMed ID: 19891499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and dynamics of melittin in lysomyristoyl phosphatidylcholine micelles determined by nuclear magnetic resonance.
    Yuan P; Fisher PJ; Prendergast FG; Kemple MD
    Biophys J; 1996 May; 70(5):2223-38. PubMed ID: 9172746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orientation and dynamics of melittin in membranes of varying composition utilizing NBD fluorescence.
    Raghuraman H; Chattopadhyay A
    Biophys J; 2007 Feb; 92(4):1271-83. PubMed ID: 17114219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.