BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 11606297)

  • 1. A semiflexible polymer model applied to loop formation in DNA hairpins.
    Kuznetsov SV; Shen Y; Benight AS; Ansari A
    Biophys J; 2001 Nov; 81(5):2864-75. PubMed ID: 11606297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Counterion and polythymidine loop-length-dependent folding and thermodynamic stability of DNA hairpins reveal the unusual counterion-dependent stability of tetraloop hairpins.
    Nayak RK; Van Orden A
    J Phys Chem B; 2013 Nov; 117(45):13956-66. PubMed ID: 24144397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melting studies of short DNA hairpins: influence of loop sequence and adjoining base pair identity on hairpin thermodynamic stability.
    Vallone PM; Paner TM; Hilario J; Lane MJ; Faldasz BD; Benight AS
    Biopolymers; 1999 Oct; 50(4):425-42. PubMed ID: 10423551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling DNA beacons at the mesoscopic scale.
    Errami J; Peyrard M; Theodorakopoulos N
    Eur Phys J E Soft Matter; 2007 Aug; 23(4):397-411. PubMed ID: 17728978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of RNA hairpins closed by wobble base pairs.
    Giese MR; Betschart K; Dale T; Riley CK; Rowan C; Sprouse KJ; Serra MJ
    Biochemistry; 1998 Jan; 37(4):1094-100. PubMed ID: 9454601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of DNA dumbbells. III. Theoretical analysis of optical melting curves of dumbbells with a 16 base-pair duplex stem and Tn end loops (n = 2, 3, 4, 6, 8, 10, 14).
    Paner TM; Amaratunga M; Benight AS
    Biopolymers; 1992 Jul; 32(7):881-92. PubMed ID: 1391636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding of a DNA hairpin loop structure in explicit solvent using replica-exchange molecular dynamics simulations.
    Kannan S; Zacharias M
    Biophys J; 2007 Nov; 93(9):3218-28. PubMed ID: 17660316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence dependence of the stability of RNA hairpin molecules with six nucleotide loops.
    Vecenie CJ; Morrow CV; Zyra A; Serra MJ
    Biochemistry; 2006 Feb; 45(5):1400-7. PubMed ID: 16445282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chain persistency in single-stranded DNA.
    Sain A; Ha BY; Tsao HK; Chen JZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061913. PubMed ID: 15244623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic stability of the 5' dangling-ended DNA hairpins formed from sequences 5'-(XY)2GGATAC(T)4GTATCC-3', where X, Y = A, T, G, C.
    Doktycz MJ; Paner TM; Amaratunga M; Benight AS
    Biopolymers; 1990; 30(7-8):829-45. PubMed ID: 2275982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-strand stacking free energy from DNA beacon kinetics.
    Aalberts DP; Parman JM; Goddard NL
    Biophys J; 2003 May; 84(5):3212-7. PubMed ID: 12719250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational analysis of DNA-trinucleotide-hairpin-loop structures using a continuum solvent model.
    Zacharias M
    Biophys J; 2001 May; 80(5):2350-63. PubMed ID: 11325735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The helix-coil transition of DNA duplexes and hairpins observed by multiple fluorescence parameters.
    VĂ¡mosi G; Clegg RM
    Biochemistry; 1998 Oct; 37(40):14300-16. PubMed ID: 9760268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of melting transitions of the DNA hairpins formed from the oligomer sequences d[GGATAC(X)4GTATCC] (X = A, T, G, C).
    Paner TM; Amaratunga M; Doktycz MJ; Benight AS
    Biopolymers; 1990 Dec; 29(14):1715-34. PubMed ID: 2207283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loop dependence of the stability and dynamics of nucleic acid hairpins.
    Kuznetsov SV; Ren CC; Woodson SA; Ansari A
    Nucleic Acids Res; 2008 Mar; 36(4):1098-112. PubMed ID: 18096625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of DNA hairpins: contribution of loop size to hairpin stability and ethidium binding.
    Rentzeperis D; Alessi K; Marky LA
    Nucleic Acids Res; 1993 Jun; 21(11):2683-9. PubMed ID: 8332464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and dynamics of DNA hybridization.
    Yin Y; Zhao XS
    Acc Chem Res; 2011 Nov; 44(11):1172-81. PubMed ID: 21718008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of DNA dumbbells. VI. Analysis of optical melting curves of dumbbells with a sixteen-base pair duplex stem and end-loops of variable size and sequence.
    Paner TM; Riccelli PV; Owczarzy R; Benight AS
    Biopolymers; 1996 Dec; 39(6):779-93. PubMed ID: 8946800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energetics of the hairpin to mismatched duplex transition of d(GCCGCAGC) on NaCl solution.
    Garcia AE; Gupta G; Soumpasis DM; Tung CS
    J Biomol Struct Dyn; 1990 Aug; 8(1):173-86. PubMed ID: 2275792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved parameters for the prediction of RNA hairpin stability.
    Serra MJ; Barnes TW; Betschart K; Gutierrez MJ; Sprouse KJ; Riley CK; Stewart L; Temel RE
    Biochemistry; 1997 Apr; 36(16):4844-51. PubMed ID: 9125504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.