BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 11606527)

  • 21. In vivo evidence that defects in the transcriptional elongation factors RPB2, TFIIS, and SPT5 enhance upstream poly(A) site utilization.
    Cui Y; Denis CL
    Mol Cell Biol; 2003 Nov; 23(21):7887-901. PubMed ID: 14560031
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5.
    Zhou K; Kuo WH; Fillingham J; Greenblatt JF
    Proc Natl Acad Sci U S A; 2009 Apr; 106(17):6956-61. PubMed ID: 19365074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Ras/PKA signaling pathway may control RNA polymerase II elongation via the Spt4p/Spt5p complex in Saccharomyces cerevisiae.
    Howard SC; Hester A; Herman PK
    Genetics; 2003 Nov; 165(3):1059-70. PubMed ID: 14668364
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs.
    Wada T; Takagi T; Yamaguchi Y; Ferdous A; Imai T; Hirose S; Sugimoto S; Yano K; Hartzog GA; Winston F; Buratowski S; Handa H
    Genes Dev; 1998 Feb; 12(3):343-56. PubMed ID: 9450929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair.
    Ding B; LeJeune D; Li S
    J Biol Chem; 2010 Feb; 285(8):5317-26. PubMed ID: 20042611
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The yeast transcription elongation factor Spt4/5 is a sequence-specific RNA binding protein.
    Blythe AJ; Yazar-Klosinski B; Webster MW; Chen E; Vandevenne M; Bendak K; Mackay JP; Hartzog GA; Vrielink A
    Protein Sci; 2016 Sep; 25(9):1710-21. PubMed ID: 27376968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutations in the SPT4, SPT5, and SPT6 genes alter transcription of a subset of histone genes in Saccharomyces cerevisiae.
    Compagnone-Post PA; Osley MA
    Genetics; 1996 Aug; 143(4):1543-54. PubMed ID: 8844144
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo.
    Pokholok DK; Hannett NM; Young RA
    Mol Cell; 2002 Apr; 9(4):799-809. PubMed ID: 11983171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Histone H3K4 and K36 methylation, Chd1 and Rpd3S oppose the functions of Saccharomyces cerevisiae Spt4-Spt5 in transcription.
    Quan TK; Hartzog GA
    Genetics; 2010 Feb; 184(2):321-34. PubMed ID: 19948887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic interactions with C-terminal domain (CTD) kinases and the CTD of RNA Pol II suggest a role for ESS1 in transcription initiation and elongation in Saccharomyces cerevisiae.
    Wilcox CB; Rossettini A; Hanes SD
    Genetics; 2004 May; 167(1):93-105. PubMed ID: 15166139
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex.
    Liu Y; Warfield L; Zhang C; Luo J; Allen J; Lang WH; Ranish J; Shokat KM; Hahn S
    Mol Cell Biol; 2009 Sep; 29(17):4852-63. PubMed ID: 19581288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation.
    Guo M; Xu F; Yamada J; Egelhofer T; Gao Y; Hartzog GA; Teng M; Niu L
    Structure; 2008 Nov; 16(11):1649-58. PubMed ID: 19000817
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bur1 kinase is required for efficient transcription elongation by RNA polymerase II.
    Keogh MC; Podolny V; Buratowski S
    Mol Cell Biol; 2003 Oct; 23(19):7005-18. PubMed ID: 12972617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The recruitment of the Saccharomyces cerevisiae Paf1 complex to active genes requires a domain of Rtf1 that directly interacts with the Spt4-Spt5 complex.
    Mayekar MK; Gardner RG; Arndt KM
    Mol Cell Biol; 2013 Aug; 33(16):3259-73. PubMed ID: 23775116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Histone deacetylases and phosphorylated polymerase II C-terminal domain recruit Spt6 for cotranscriptional histone reassembly.
    Burugula BB; Jeronimo C; Pathak R; Jones JW; Robert F; Govind CK
    Mol Cell Biol; 2014 Nov; 34(22):4115-29. PubMed ID: 25182531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DSIF and RNA polymerase II CTD phosphorylation coordinate the recruitment of Rpd3S to actively transcribed genes.
    Drouin S; Laramée L; Jacques PÉ; Forest A; Bergeron M; Robert F
    PLoS Genet; 2010 Oct; 6(10):e1001173. PubMed ID: 21060864
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Yeast screens identify the RNA polymerase II CTD and SPT5 as relevant targets of BRCA1 interaction.
    Bennett CB; Westmoreland TJ; Verrier CS; Blanchette CA; Sabin TL; Phatnani HP; Mishina YV; Huper G; Selim AL; Madison ER; Bailey DD; Falae AI; Galli A; Olson JA; Greenleaf AL; Marks JR
    PLoS One; 2008 Jan; 3(1):e1448. PubMed ID: 18197258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sub1 globally regulates RNA polymerase II C-terminal domain phosphorylation.
    García A; Rosonina E; Manley JL; Calvo O
    Mol Cell Biol; 2010 Nov; 30(21):5180-93. PubMed ID: 20823273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conditional depletion of transcriptional kinases Ctk1 and Bur1 and effects on co-transcriptional spliceosome assembly and pre-mRNA splicing.
    Maudlin IE; Beggs JD
    RNA Biol; 2021 Nov; 18(sup2):782-793. PubMed ID: 34705599
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The ESS1 prolyl isomerase and its suppressor BYE1 interact with RNA pol II to inhibit transcription elongation in Saccharomyces cerevisiae.
    Wu X; Rossettini A; Hanes SD
    Genetics; 2003 Dec; 165(4):1687-702. PubMed ID: 14704159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.