These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 11606605)

  • 1. Metabolic power, mechanical power and efficiency during wind tunnel flight by the European starling Sturnus vulgaris.
    Ward S; Möller U; Rayner JM; Jackson DM; Bilo D; Nachtigall W; Speakman JR
    J Exp Biol; 2001 Oct; 204(Pt 19):3311-22. PubMed ID: 11606605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating power curves of flying vertebrates.
    Rayner JM
    J Exp Biol; 1999 Dec; 202(Pt 23):3449-61. PubMed ID: 10562528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic power of European starlings Sturnus vulgaris during flight in a wind tunnel, estimated from heat transfer modelling, doubly labelled water and mask respirometry.
    Ward S; Möller U; Rayner JM; Jackson DM; Nachtigall W; Speakman JR
    J Exp Biol; 2004 Nov; 207(Pt 24):4291-8. PubMed ID: 15531650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does the metabolic rate-flight speed relationship vary among geometrically similar birds of different mass?
    Bundle MW; Hansen KS; Dial KP
    J Exp Biol; 2007 Mar; 210(Pt 6):1075-83. PubMed ID: 17337719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological, aerodynamic and geometric constraints of flapping account for bird gaits, and bounding and flap-gliding flight strategies.
    Usherwood JR
    J Theor Biol; 2016 Nov; 408():42-52. PubMed ID: 27418386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flight style of the black-billed magpie: variation in wing kinematics, neuromuscular control, and muscle composition.
    Tobalske BW; Olson NE; Dial KP
    J Exp Zool; 1997 Nov; 279(4):313-29. PubMed ID: 9360313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning of Strouhal number for high propulsive efficiency accurately predicts how wingbeat frequency and stroke amplitude relate and scale with size and flight speed in birds.
    Nudds RL; Taylor GK; Thomas AL
    Proc Biol Sci; 2004 Oct; 271(1552):2071-6. PubMed ID: 15451698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexibility in flight behaviour of barn swallows (Hirundo rustica) and house martins (Delichon urbica) tested in a wind tunnel.
    Bruderer L; Liechti F; Bilo D
    J Exp Biol; 2001 Apr; 204(Pt 8):1473-84. PubMed ID: 11273808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical power curve measured in the wake of pied flycatchers indicates modulation of parasite power across flight speeds.
    Johansson LC; Maeda M; Henningsson P; Hedenström A
    J R Soc Interface; 2018 Jan; 15(138):. PubMed ID: 29386402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The metabolic power requirements of flight and estimations of flight muscle efficiency in the cockatiel (Nymphicus hollandicus).
    Morris CR; Nelson FE; Askew GN
    J Exp Biol; 2010 Aug; 213(Pt 16):2788-96. PubMed ID: 20675549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speeds and wingbeat frequencies of migrating birds compared with calculated benchmarks.
    Pennycuick CJ
    J Exp Biol; 2001 Oct; 204(Pt 19):3283-94. PubMed ID: 11606602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flight kinematics of the barn swallow (Hirundo rustica) over a wide range of speeds in a wind tunnel.
    Park KJ; Rosén M; Hedenström A
    J Exp Biol; 2001 Aug; 204(Pt 15):2741-50. PubMed ID: 11533124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical independence of wingbeat and breathing in starlings.
    Banzett RB; Nations CS; Wang N; Butler JP; Lehr JL
    Respir Physiol; 1992 Jul; 89(1):27-36. PubMed ID: 1518985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimates of circulation and gait change based on a three-dimensional kinematic analysis of flight in cockatiels (Nymphicus hollandicus) and ringed turtle-doves (Streptopelia risoria).
    Hedrick TL; Tobalske BW; Biewener AA
    J Exp Biol; 2002 May; 205(Pt 10):1389-409. PubMed ID: 11976351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wingbeat kinematics and energetics during weightlifting in hovering hummingbirds across an elevational gradient.
    Groom DJ; Toledo MC; Welch KC
    J Comp Physiol B; 2017 Jan; 187(1):165-182. PubMed ID: 27431590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How the hummingbird wingbeat is tuned for efficient hovering.
    Ingersoll R; Lentink D
    J Exp Biol; 2018 Oct; 221(Pt 20):. PubMed ID: 30323114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Estimation of Time Dependent Lift of a European Starling (Sturnus vulgaris) during Flapping Flight.
    Stalnov O; Ben-Gida H; Kirchhefer AJ; Guglielmo CG; Kopp GA; Liberzon A; Gurka R
    PLoS One; 2015; 10(9):e0134582. PubMed ID: 26394213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.