BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 11607080)

  • 21. Phospholipid analysis of mammalian optic nerve tissue: a 31P nuclear magnetic resonance spectroscopic study.
    Greiner CA; Greiner JV; Hebert E; Berthiaume RR; Glonek T
    Ophthalmic Res; 1994; 26(5):264-74. PubMed ID: 7877796
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transport, Compartmentation, and Metabolism of Homoserine in Higher Plant Cells. Carbon-13- and phosphorus-31-nuclear magnetic resonance studies Carbon-13- and Phosphorus-31-Nuclear Magnetic Resonance Studies.
    Aubert S; Curien G; Bligny R; Gout E; Douce R
    Plant Physiol; 1998 Feb; 116(2):547-57. PubMed ID: 9490758
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Agonist-mediated activation of phosphatidylcholine-specific phospholipase C and D in intestinal smooth muscle.
    Murthy KS; Makhlouf GM
    Mol Pharmacol; 1995 Aug; 48(2):293-304. PubMed ID: 7651363
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fatty acids stimulate phosphatidylcholine synthesis and CTP:choline-phosphate cytidylyltransferase in type II pneumocytes isolated from adult rat lung.
    Burkhardt R; Von Wichert P; Batenburg JJ; Van Golde LM
    Biochem J; 1988 Sep; 254(2):495-500. PubMed ID: 2845954
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Muscle 31P-NMR in humans: estimate of bias and qualitative assessment of ATPase activity.
    Binzoni T; Cerretelli P
    J Appl Physiol (1985); 1991 Nov; 71(5):1700-4. PubMed ID: 1837013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri.
    Ueno D; Iwashita T; Zhao FJ; Ma JF
    Plant Cell Physiol; 2008 Apr; 49(4):540-8. PubMed ID: 18281325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glycerophosphocholine metabolism in higher plant cells. Evidence of a new glyceryl-phosphodiester phosphodiesterase.
    van der Rest B; Boisson AM; Gout E; Bligny R; Douce R
    Plant Physiol; 2002 Sep; 130(1):244-55. PubMed ID: 12226504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantification of phosphocholine and glycerophosphocholine with 31P edited 1H NMR spectroscopy.
    Loening NM; Chamberlin AM; Zepeda AG; Gonzalez RG; Cheng LL
    NMR Biomed; 2005 Nov; 18(7):413-20. PubMed ID: 16075415
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of phosphate esters in male fertility.
    Arrata WS; Burt T; Corder S
    Fertil Steril; 1978 Sep; 30(3):329-33. PubMed ID: 710605
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of action of the antineoplastic drug lonidamine: 31P and 13C nuclear magnetic resonance studies.
    Ben-Horin H; Tassini M; Vivi A; Navon G; Kaplan O
    Cancer Res; 1995 Jul; 55(13):2814-21. PubMed ID: 7796408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Altered phospholipid metabolism in schizophrenia: a phosphorus 31 nuclear magnetic resonance spectroscopy study.
    Weber-Fahr W; Englisch S; Esser A; Tunc-Skarka N; Meyer-Lindenberg A; Ende G; Zink M
    Psychiatry Res; 2013 Dec; 214(3):365-73. PubMed ID: 24045051
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bombesin and phorbol ester stimulate phosphatidylcholine hydrolysis by phospholipase C: evidence for a role of protein kinase C.
    Muir JG; Murray AW
    J Cell Physiol; 1987 Mar; 130(3):382-91. PubMed ID: 3558493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Why choline supplementation did not enhance phosphatidylcholine level in Candida albicans.
    Trivedi A; Dudani AK; Prasad R
    Biochem Int; 1983 Jan; 6(1):119-28. PubMed ID: 6089802
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lymphocyte metabolism and cytotoxic activity monitored with 31P magnetic resonance spectroscopy.
    Narayan KS; Freeman DM; Moress EA; Ingram M; Ross B
    J Biol Response Mod; 1990 Apr; 9(2):241-6. PubMed ID: 2341862
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and preclinical evaluation of the choline transport tracer deshydroxy-[18F]fluorocholine ([18F]dOC).
    Henriksen G; Herz M; Hauser A; Schwaiger M; Wester HJ
    Nucl Med Biol; 2004 Oct; 31(7):851-8. PubMed ID: 15464386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphorus nuclear magnetic resonance of fast- and slow-twitch muscle.
    Meyer RA; Brown TR; Kushmerick MJ
    Am J Physiol; 1985 Mar; 248(3 Pt 1):C279-87. PubMed ID: 3976878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a lipid activated CTP:phosphocholine cytidylyltransferase from Drosophila melanogaster.
    Helmink BA; Friesen JA
    Biochim Biophys Acta; 2004 Jul; 1683(1-3):78-88. PubMed ID: 15238222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular causes of the aberrant choline phospholipid metabolism in breast cancer.
    Glunde K; Jie C; Bhujwalla ZM
    Cancer Res; 2004 Jun; 64(12):4270-6. PubMed ID: 15205341
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alterations of choline phospholipid metabolism in ovarian tumor progression.
    Iorio E; Mezzanzanica D; Alberti P; Spadaro F; Ramoni C; D'Ascenzo S; Millimaggi D; Pavan A; Dolo V; Canevari S; Podo F
    Cancer Res; 2005 Oct; 65(20):9369-76. PubMed ID: 16230400
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphatidylcholine metabolism and choline kinase in human osteoblasts.
    Li Z; Wu G; van der Veen JN; Hermansson M; Vance DE
    Biochim Biophys Acta; 2014 Jun; 1841(6):859-67. PubMed ID: 24583375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.