These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 11607244)

  • 41. Immunochemical detection with rabbit polyclonal and mouse monoclonal antibodies of different pools of phytochrome from etiolated and green Avena shoots.
    Shimazaki Y; Pratt LH
    Planta; 1985 Jun; 164(3):333-44. PubMed ID: 24249602
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phytochrome Chromophore Biosynthesis : Both 5-Aminolevulinic Acid and Biliverdin Overcome Inhibition by Gabaculine in Etiolated Avena sativa L. Seedlings.
    Elich TD; Lagarias JC
    Plant Physiol; 1987 Jun; 84(2):304-10. PubMed ID: 16665435
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photocontrol of hypocotyl elongation in light-grown Cucumis sativus L. : A synergism between the blue-light photoreceptor and phytochrome.
    Attridge TH; Black M; Gaba V
    Planta; 1984 Nov; 162(5):422-6. PubMed ID: 24253223
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Etiolated Hypocotyls: A New System to Study the Impact of Abiotic Stress on Cell Expansion.
    Martín G; Duque P
    Methods Mol Biol; 2022; 2494():195-205. PubMed ID: 35467208
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Involvement of an ABC transporter in a developmental pathway regulating hypocotyl cell elongation in the light.
    Sidler M; Hassa P; Hasan S; Ringli C; Dudler R
    Plant Cell; 1998 Oct; 10(10):1623-36. PubMed ID: 9761790
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of light on ethylene production and hypocotyl growth of soybean seedlings.
    Samimy C
    Plant Physiol; 1978 May; 61(5):772-4. PubMed ID: 16660382
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The
    Xiaoxia L; Zhang J; Jinkai S; Ying L; Guodong R
    Front Cell Dev Biol; 2019; 7():309. PubMed ID: 31850345
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Studies on phytochrome. Two photoreversible chromoproteins from etiolated oat seedlings.
    Walker TS; Bailey JL
    Biochem J; 1970 Dec; 120(3):607-12. PubMed ID: 5499973
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Guard-cell phytochromes impact seedling photomorphogenesis and rosette leaf morphology.
    Oh S; Kong Q; Montgomery BL
    MicroPubl Biol; 2022; 2022():. PubMed ID: 35128344
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genetic Regulation of Development in Sorghum bicolor: VII. ma(3) Flowering Mutant Lacks a Phytochrome that Predominates in Green Tissue.
    Childs KL; Cordonnier-Pratt MM; Pratt LH; Morgan PW
    Plant Physiol; 1992 Jun; 99(2):765-70. PubMed ID: 16668953
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-temperature alert: PHYTOCHROME INTERACTING FACTOR 4 regulates microtubule organization to mediate high temperature-induced hypocotyl elongation.
    Yadav A
    Plant Cell; 2023 May; 35(6):1958-1959. PubMed ID: 36889815
    [No Abstract]   [Full Text] [Related]  

  • 52. Two spectrally different forms of the phytochrome chromophore extracted from etiolated oat seedlings.
    Walker TS; Bailey JL
    Biochem J; 1968 Apr; 107(4):603-5. PubMed ID: 5660640
    [No Abstract]   [Full Text] [Related]  

  • 53. Purification of oat and rye phytochrome.
    Rice HV; Briggs WR; Jackson-White CJ
    Plant Physiol; 1973 May; 51(5):917-26. PubMed ID: 16658440
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evidence for bound phytochrome in oat seedlings.
    Rubinstein B; Drury KS; Park RB
    Plant Physiol; 1969 Jan; 44(1):105-9. PubMed ID: 16657022
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photocontrol of Hypocotyl Elongation in Light-Grown Cucumis sativus L. : Responses to Phytochrome Photostationary State and Fluence Rate.
    Gaba V; Black M
    Plant Physiol; 1985 Dec; 79(4):1011-4. PubMed ID: 16664520
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Skotomorphogenesis exploits threonine to promote hypocotyl elongation.
    Tabeta H; Higashi Y; Okazaki Y; Toyooka K; Wakazaki M; Sato M; Saito K; Hirai MY; Ferjani A
    Quant Plant Biol; 2022; 3():e26. PubMed ID: 37077988
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The influence of chlorophyll on in-vivo difference spectra of phytochrome.
    Grill R
    Planta; 1972 Sep; 108(3):185-202. PubMed ID: 24473853
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The aurea mutant of tomato is deficient in spectrophotometrically and immunochemically detectable phytochrome.
    Parks BM; Jones AM; Adamse P; Koornneef M; Kendrick RE; Quail PH
    Plant Mol Biol; 1987 Mar; 9(2):97-107. PubMed ID: 24276899
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of a highly conserved domain on phytochrome from angiosperms to algae.
    Cordonnier MM; Greppin H; Pratt LH
    Plant Physiol; 1986 Apr; 80(4):982-7. PubMed ID: 16664752
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photoreversible calcium fluxes induced by phytochrome in oat coleoptile cells.
    Hale CC; Roux SJ
    Plant Physiol; 1980 Apr; 65(4):658-62. PubMed ID: 16661257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.