These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 11607314)

  • 1. The 31S0-33P0 transition in the aluminum isotope ion 26A1+: a potentially superior passive laser frequency standard and spectrum analyzer.
    Yu N; Dehmelt H; Nagourney W
    Proc Natl Acad Sci U S A; 1992 Aug; 89(16):7289. PubMed ID: 11607314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 6S(0)-6P(0) transition in thallium isotope ion Tl: A superior atomic clock.
    Dehmelt H; Yu N; Nagourney W
    Proc Natl Acad Sci U S A; 1989 Jun; 86(11):3938. PubMed ID: 16594046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. External-Field Shifts of the (199)Hg(+) Optical Frequency Standard.
    Itano WM
    J Res Natl Inst Stand Technol; 2000; 105(6):829-37. PubMed ID: 27551639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prospects of a Pb^{2+} Ion Clock.
    Beloy K
    Phys Rev Lett; 2021 Jul; 127(1):013201. PubMed ID: 34270290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherent Suppression of Tensor Frequency Shifts through Magnetic Field Rotation.
    Lange R; Huntemann N; Sanner C; Shao H; Lipphardt B; Tamm C; Peik E
    Phys Rev Lett; 2020 Oct; 125(14):143201. PubMed ID: 33064511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electric quadrupole shift cancellation in single-ion optical frequency standards.
    Dubé P; Madej AA; Bernard JE; Marmet L; Boulanger JS; Cundy S
    Phys Rev Lett; 2005 Jul; 95(3):033001. PubMed ID: 16090738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absolute frequency and isotope shift measurements of mercury
    Witkowski M; Kowzan G; Munoz-Rodriguez R; Ciuryło R; Żuchowski PS; Masłowski P; Zawada M
    Opt Express; 2019 Apr; 27(8):11069-11083. PubMed ID: 31052957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of the (199)Hg+ 5d9 6s2 (2)D(5/2) electric quadrupole moment and a constraint on the quadrupole shift.
    Oskay WH; Itano WM; Bergquist JC
    Phys Rev Lett; 2005 Apr; 94(16):163001. PubMed ID: 15904220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser spectroscopic characterization of the nuclear-clock isomer
    Thielking J; Okhapkin MV; Głowacki P; Meier DM; von der Wense L; Seiferle B; Düllmann CE; Thirolf PG; Peik E
    Nature; 2018 Apr; 556(7701):321-325. PubMed ID: 29670266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quadruply Ionized Barium as a Candidate for a High-Accuracy Optical Clock.
    Beloy K; Dzuba VA; Brewer SM
    Phys Rev Lett; 2020 Oct; 125(17):173002. PubMed ID: 33156679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trap-Induced ac Zeeman Shift of the Thorium-229 Nuclear Clock Frequency.
    Beloy K
    Phys Rev Lett; 2023 Mar; 130(10):103201. PubMed ID: 36962041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. rf Spectroscopy with a single Ba+ ion.
    Koerber TW; Schacht MH; Hendrickson KR; Nagourney W; Fortson EN
    Phys Rev Lett; 2002 Apr; 88(14):143002. PubMed ID: 11955145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency measurement of the 2S(1/2)-2D(3/2) electric quadrupole transition in a single 171Yb+ ion.
    Webster S; Godun R; King S; Huang G; Walton B; Tsatourian V; Margolis H; Lea S; Gill P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):592-9. PubMed ID: 20211775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Application of Low-Frequency Transition in the Assessment of the Second-Order Zeeman Frequency Shift.
    Bai Y; Wang X; Shi J; Yang F; Ruan J; Dong R; Zhang S
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopy of a Synthetic Trapped Ion Qubit.
    Hucul D; Christensen JE; Hudson ER; Campbell WC
    Phys Rev Lett; 2017 Sep; 119(10):100501. PubMed ID: 28949151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absolute frequency measurement of the 40Ca+ 4s(2)S_(1/2)-3d(2)D_(5/2) clock transition.
    Chwalla M; Benhelm J; Kim K; Kirchmair G; Monz T; Riebe M; Schindler P; Villar AS; Hänsel W; Roos CF; Blatt R; Abgrall M; Santarelli G; Rovera GD; Laurent P
    Phys Rev Lett; 2009 Jan; 102(2):023002. PubMed ID: 19257267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice.
    Barber ZW; Hoyt CW; Oates CW; Hollberg L; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2006 Mar; 96(8):083002. PubMed ID: 16606176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical lattice induced light shifts in an yb atomic clock.
    Barber ZW; Stalnaker JE; Lemke ND; Poli N; Oates CW; Fortier TM; Diddams SA; Hollberg L; Hoyt CW; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2008 Mar; 100(10):103002. PubMed ID: 18352181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards a Mg Lattice Clock: Observation of the ^{1}S_{0}-^{3}P_{0} Transition and Determination of the Magic Wavelength.
    Kulosa AP; Fim D; Zipfel KH; Rühmann S; Sauer S; Jha N; Gibble K; Ertmer W; Rasel EM; Safronova MS; Safronova UI; Porsev SG
    Phys Rev Lett; 2015 Dec; 115(24):240801. PubMed ID: 26705620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric quadrupole moments of the D states of alkaline-earth-metal ions.
    Sur C; Latha KV; Sahoo BK; Chaudhuri RK; Das BP; Mukherjee D
    Phys Rev Lett; 2006 May; 96(19):193001. PubMed ID: 16803101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.