These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 11607328)

  • 21. Pollination biology in the dioecious orchid Catasetum uncatum: How does floral scent influence the behaviour of pollinators?
    Milet-Pinheiro P; Navarro DMDAF; Dötterl S; Carvalho AT; Pinto CE; Ayasse M; Schlindwein C
    Phytochemistry; 2015 Aug; 116():149-161. PubMed ID: 25771507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous.
    Friis EM; Pedersen KR; Crane PR
    Nature; 2001 Mar; 410(6826):357-60. PubMed ID: 11268209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fossil flowers of ericalean affinity from the Late Cretaceous of Southern Sweden.
    Schönenberger J; Friis EM
    Am J Bot; 2001 Mar; 88(3):467-80. PubMed ID: 11250825
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hedycarya macrofossils and associated Planarpollenites pollen from the early Miocene of New Zealand.
    Conran JG; Bannister JM; Mildenhall DC; Lee DE
    Am J Bot; 2016 May; 103(5):938-56. PubMed ID: 27208361
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The evolution of staminodes in angiosperms: patterns of stamen reduction, loss, and functional re-invention.
    Walker-Larsen J; Harder LD
    Am J Bot; 2000 Oct; 87(10):1367-84. PubMed ID: 11034915
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Paleoaltingia gen. nov., a new genus of Altingiaceae from the Late Cretaceous of New Jersey.
    Lai Y; Gandolfo MA; Crepet WL; Nixon KC
    Am J Bot; 2021 Mar; 108(3):461-471. PubMed ID: 33660257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets.
    Manos PS; Soltis PS; Soltis DE; Manchester SR; Oh SH; Bell CD; Dilcher DL; Stone DE
    Syst Biol; 2007 Jun; 56(3):412-30. PubMed ID: 17558964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative structure and pollen production of the stamens and pollinator-deceptive staminodes of Commelina coelestis and C. dianthifolia (Commelinaceae).
    Hrycan WC; Davis AR
    Ann Bot; 2005 Jun; 95(7):1113-30. PubMed ID: 15797898
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inferring hominoid and early hominid phylogeny using craniodental characters: the role of fossil taxa.
    Strait DS; Grine FE
    J Hum Evol; 2004 Dec; 47(6):399-452. PubMed ID: 15566946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flowers of Apocynaceae in amber from the early Eocene of India.
    Singh H; Judd WS; Samant B; Agnihotri P; Grimaldi DA; Manchester SR
    Am J Bot; 2021 May; 108(5):883-892. PubMed ID: 34018178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Floral developmental evidence for the systematic position of Batis (Bataceae).
    Ronse De Craene LP
    Am J Bot; 2005 Apr; 92(4):752-60. PubMed ID: 21652455
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lower eocene and paleocene gentianaceae: floral and palynological evidence.
    Crepet WL; Daghlian CP
    Science; 1981 Oct; 214(4516):75-7. PubMed ID: 17802576
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two early eudicot fossil flowers from the Kamikitaba assemblage (Coniacian, Late Cretaceous) in northeastern Japan.
    Takahashi M; Herendeen PS; Xiao X
    J Plant Res; 2017 Sep; 130(5):809-826. PubMed ID: 28497291
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new fossil fern assignable to Gleicheniaceae from Late Cretaceous sediments of New Jersey.
    Gandolfo M; Nixon K; Crepet W; Ratcliffe G
    Am J Bot; 1997 Apr; 84(4):483. PubMed ID: 21708602
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potomacapnos apeleutheron gen. et sp. nov., a new Early Cretaceous angiosperm from the Potomac Group and its implications for the evolution of eudicot leaf architecture.
    Jud NA; Hickey LJ
    Am J Bot; 2013 Dec; 100(12):2437-49. PubMed ID: 24287268
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A formicine in New Jersey cretaceous amber (Hymenoptera: formicidae) and early evolution of the ants.
    Grimaldi D; Agosti D
    Proc Natl Acad Sci U S A; 2000 Dec; 97(25):13678-83. PubMed ID: 11078527
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ninety-seven million years of angiosperm-insect association: paleobiological insights into the meaning of coevolution.
    Labandeira CC; Dilcher DL; Davis DR; Wagner DL
    Proc Natl Acad Sci U S A; 1994 Dec; 91(25):12278-82. PubMed ID: 11607501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the evolutionary history of Ephedra: Cretaceous fossils and extant molecules.
    Rydin C; Pedersen KR; Friis EM
    Proc Natl Acad Sci U S A; 2004 Nov; 101(47):16571-6. PubMed ID: 15545612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Putting scales into evolutionary time: the divergence of major scale insect lineages (Hemiptera) predates the radiation of modern angiosperm hosts.
    Vea IM; Grimaldi DA
    Sci Rep; 2016 Mar; 6():23487. PubMed ID: 27000526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flower-associated brachycera flies as fossil evidence for jurassic angiosperm origins.
    Ren D
    Science; 1998 Apr; 280(5360):85-8. PubMed ID: 9525862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.