These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 11607622)
1. Temporally and spectrally resolved subpicosecond energy transfer within the peripheral antenna complex (LH2) and from LH2 to the core antenna complex in photosynthetic purple bacteria. Hess S; Chachisvilis M; Timpmann K; Jones MR; Fowler GJ; Hunter CN; Sundström V Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12333-7. PubMed ID: 11607622 [TBL] [Abstract][Full Text] [Related]
2. Direct energy transfer from the peripheral LH2 antenna to the reaction center in a mutant of Rhodobacter sphaeroides that lacks the core LH1 antenna. Hess S; Visscher K; Ulander J; Pullerits T; Jones MR; Hunter CN; Sundström V Biochemistry; 1993 Oct; 32(39):10314-22. PubMed ID: 8399174 [TBL] [Abstract][Full Text] [Related]
3. Excitation energy transfer between the B850 and B875 antenna complexes of Rhodobacter sphaeroides. Nagarajan V; Parson WW Biochemistry; 1997 Feb; 36(8):2300-6. PubMed ID: 9047332 [TBL] [Abstract][Full Text] [Related]
4. Enhanced rates of subpicosecond energy transfer in blue-shifted light harvesting LH2 mutants of Rhodobacter sphaeroides. Hess S; Visscher KJ; Pullerits T; Sundström V; Fowler GJ; Hunter CN Biochemistry; 1994 Jul; 33(27):8300-5. PubMed ID: 8031762 [TBL] [Abstract][Full Text] [Related]
5. Pathways of energy flow through the light-harvesting antenna of the photosynthetic purple bacterium rhodobacter sphaeroides. Zhang FG; van Grondelle R; Sundström V Biophys J; 1992 Apr; 61(4):911-20. PubMed ID: 19431825 [TBL] [Abstract][Full Text] [Related]
6. The role of betaArg-10 in the B800 bacteriochlorophyll and carotenoid pigment environment within the light-harvesting LH2 complex of Rhodobacter sphaeroides. Fowler GJ; Hess S; Pullerits T; Sundström V; Hunter CN Biochemistry; 1997 Sep; 36(37):11282-91. PubMed ID: 9287171 [TBL] [Abstract][Full Text] [Related]
7. Generation of triplet and cation-radical bacteriochlorophyll a in carotenoidless LH1 and LH2 antenna complexes from Rhodobacter sphaeroides. Limantara L; Fujii R; Zhang JP; Kakuno T; Hara H; Kawamori A; Yagura T; Cogdell RJ; Koyama Y Biochemistry; 1998 Dec; 37(50):17469-86. PubMed ID: 9860862 [TBL] [Abstract][Full Text] [Related]
8. Identification of the upper exciton component of the B850 bacteriochlorophylls of the LH2 antenna complex, using a B800-free mutant of Rhodobacter sphaeroides. Koolhaus MH; Frese RN; Fowler GJ; Bibby TS; Georgakopoulou S; van der Zwan G; Hunter CN; van Grondelle R Biochemistry; 1998 Apr; 37(14):4693-8. PubMed ID: 9548732 [TBL] [Abstract][Full Text] [Related]
9. Energy transfer in spectrally inhomogeneous light-harvesting pigment-protein complexes of purple bacteria. Hess S; Akesson E; Cogdell RJ; Pullerits T; Sundström V Biophys J; 1995 Dec; 69(6):2211-25. PubMed ID: 8599629 [TBL] [Abstract][Full Text] [Related]
10. Structural and functional proteomics of intracytoplasmic membrane assembly in Rhodobacter sphaeroides. Woronowicz K; Harrold JW; Kay JM; Niederman RA J Mol Microbiol Biotechnol; 2013; 23(1-2):48-62. PubMed ID: 23615195 [TBL] [Abstract][Full Text] [Related]
11. Effects of aggregation on the excitation dynamics of LH2 from Thermochromatium tepidum in aqueous phase and in chromatophores. Yang F; Yu LJ; Wang P; Ai XC; Wang ZY; Zhang JP J Phys Chem B; 2011 Jun; 115(24):7906-13. PubMed ID: 21630650 [TBL] [Abstract][Full Text] [Related]
12. Energy transfer in purple bacterial photosynthetic units from cells grown in various light intensities. Niedzwiedzki DM; Gardiner AT; Blankenship RE; Cogdell RJ Photosynth Res; 2018 Sep; 137(3):389-402. PubMed ID: 29725994 [TBL] [Abstract][Full Text] [Related]
13. In vitro reconstitution of the core and peripheral light-harvesting complexes of Rhodospirillum molischianum from separately isolated components. Todd JB; Parkes-Loach PS; Leykam JF; Loach PA Biochemistry; 1998 Dec; 37(50):17458-68. PubMed ID: 9860861 [TBL] [Abstract][Full Text] [Related]
14. B800-->B850 energy transfer mechanism in bacterial LH2 complexes investigated by B800 pigment exchange. Herek JL; Fraser NJ; Pullerits T; Martinsson P; Polívka T; Scheer H; Cogdell RJ; Sundström V Biophys J; 2000 May; 78(5):2590-6. PubMed ID: 10777755 [TBL] [Abstract][Full Text] [Related]
15. Fluorescence micro-spectroscopy study of individual photosynthetic membrane vesicles and light-harvesting complexes. Leiger K; Reisberg L; Freiberg A J Phys Chem B; 2013 Aug; 117(32):9315-26. PubMed ID: 23859536 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of energy transfer from lycopene to bacteriochlorophyll in genetically-modified LH2 complexes of Rhodobacter sphaeroides. Hörvin Billsten H; Herek JL; Garcia-Asua G; Hashøj L; Polívka T; Hunter CN; Sundström V Biochemistry; 2002 Mar; 41(12):4127-36. PubMed ID: 11900556 [TBL] [Abstract][Full Text] [Related]
17. Uphill energy transfer in LH2-containing purple bacteria at room temperature. Trissl HW; Law CJ; Cogdell RJ Biochim Biophys Acta; 1999 Jun; 1412(2):149-72. PubMed ID: 10393258 [TBL] [Abstract][Full Text] [Related]
18. Excitation Energy Transfer from Bacteriochlorophyll Saga Y; Yamashita M; Masaoka Y; Hidaka T; Imanishi M; Kimura Y; Nagasawa Y J Phys Chem B; 2021 Mar; 125(8):2009-2017. PubMed ID: 33605728 [TBL] [Abstract][Full Text] [Related]
19. Membrane development in purple photosynthetic bacteria in response to alterations in light intensity and oxygen tension. Niederman RA Photosynth Res; 2013 Oct; 116(2-3):333-48. PubMed ID: 23708977 [TBL] [Abstract][Full Text] [Related]
20. High pressure studies of energy transfer and strongly coupled bacteriochlorophyll dimers in photosynthetic protein complexes. Reddy NR; Wu HM; Jankowiak R; Picorel R; Cogdell RJ; Small GJ Photosynth Res; 1996 May; 48(1-2):277-89. PubMed ID: 24271309 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]