BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 11607826)

  • 1. Chromosomal translocation master genes, mouse models and experimental therapeutics.
    Rabbitts TH
    Oncogene; 2001 Sep; 20(40):5763-77. PubMed ID: 11607826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mouse models of human chromosomal translocations and approaches to cancer therapy.
    Rabbitts TH; Appert A; Chung G; Collins EC; Drynan L; Forster A; Lobato MN; McCormack MP; Pannell R; Spandidos A; Stocks MR; Tanaka T; Tse E
    Blood Cells Mol Dis; 2001; 27(1):249-59. PubMed ID: 11358385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosomal translocation engineering to recapitulate primary events of human cancer.
    Forster A; Pannell R; Drynan L; Cano F; Chan N; Codrington R; Daser A; Lobato N; Metzler M; Nam CH; Rodriguez S; Tanaka T; Rabbitts T
    Cold Spring Harb Symp Quant Biol; 2005; 70():275-82. PubMed ID: 16869763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The invertor knock-in conditional chromosomal translocation mimic.
    Forster A; Pannell R; Drynan LF; Codrington R; Daser A; Metzler M; Lobato MN; Rabbitts TH
    Nat Methods; 2005 Jan; 2(1):27-30. PubMed ID: 15782166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia.
    Zelent A; Greaves M; Enver T
    Oncogene; 2004 May; 23(24):4275-83. PubMed ID: 15156184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel cryptic translocation t(12;17)(p13;p12-p13) in a secondary acute myeloid leukemia results in a fusion of the ETV6 gene and the antisense strand of the PER1 gene.
    Murga Penas EM; Cools J; Algenstaedt P; Hinz K; Seeger D; Schafhausen P; Schilling G; Marynen P; Hossfeld DK; Dierlamm J
    Genes Chromosomes Cancer; 2003 May; 37(1):79-83. PubMed ID: 12661008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perspective: chromosomal translocations can affect genes controlling gene expression and differentiation--why are these functions targeted?
    Rabbitts TH
    J Pathol; 1999 Jan; 187(1):39-42. PubMed ID: 10341705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromosomal translocations in human cancer.
    Rabbitts TH
    Nature; 1994 Nov; 372(6502):143-9. PubMed ID: 7969446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of chromosomal translocations in acute leukemias: the LMO2 paradigm in transcription and development.
    Rabbitts TH; Bucher K; Chung G; Grutz G; Warren A; Yamada Y
    Cancer Res; 1999 Apr; 59(7 Suppl):1794s-1798s. PubMed ID: 10197599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosomal abnormalities and tumor development: from genes to therapeutic mechanisms.
    Cobaleda C; Pérez-Losada J; Sánchez-García I
    Bioessays; 1998 Nov; 20(11):922-30. PubMed ID: 9872058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin structural elements and chromosomal translocations in leukemia.
    Zhang Y; Rowley JD
    DNA Repair (Amst); 2006 Sep; 5(9-10):1282-97. PubMed ID: 16893685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of chromosomal alterations in human cancer development.
    Gasparini P; Sozzi G; Pierotti MA
    J Cell Biochem; 2007 Oct; 102(2):320-31. PubMed ID: 17722107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental impact of leukemic fusion genes on stem cell fate.
    Enver T; Tsuzuki S; Brown J; Hong D; Gupta R; Ford T; Egucchi MI; Egucchi M; Greaves M
    Ann N Y Acad Sci; 2005 Jun; 1044():16-23. PubMed ID: 15958693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translocations, cancer and the puzzle of specificity.
    Barr FG
    Nat Genet; 1998 Jun; 19(2):121-4. PubMed ID: 9620766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translocations, fusion genes, and acute leukemia.
    Saha V; Young BD; Freemont PS
    J Cell Biochem Suppl; 1998; 30-31():264-76. PubMed ID: 9893279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fusion oncogenes and tumor type specificity--insights from salivary gland tumors.
    Stenman G
    Semin Cancer Biol; 2005 Jun; 15(3):224-35. PubMed ID: 15826837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical mechanisms of chromosomal translocations resulting from DNA double-strand breaks.
    Povirk LF
    DNA Repair (Amst); 2006 Sep; 5(9-10):1199-212. PubMed ID: 16822725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromosome translocations in sarcomas and the emergence of oncogenic transcription factors.
    Xia SJ; Barr FG
    Eur J Cancer; 2005 Nov; 41(16):2513-27. PubMed ID: 16213703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dysregulation of lymphocyte proliferation by chromosomal translocations and sequential genetic changes.
    Klein G
    Bioessays; 2000 May; 22(5):414-22. PubMed ID: 10797481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alveolar rhabdomyosarcoma: is the cell of origin a mesenchymal stem cell?
    Charytonowicz E; Cordon-Cardo C; Matushansky I; Ziman M
    Cancer Lett; 2009 Jul; 279(2):126-36. PubMed ID: 19008039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.