These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 1162345)

  • 21. Rapid identification of lectin receptors and their possible function in sea urchin cell systems.
    Latham VH; Herrera S; Rostamiani K; Chun HH; Oppenheimer SB
    Acta Histochem; 1995 Oct; 97(4):373-82. PubMed ID: 8607287
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The use of confocal microscopy and STERECON reconstructions in the analysis of sea urchin embryonic cell division.
    Summers RG; Musial CE; Cheng PC; Leith A; Marko M
    J Electron Microsc Tech; 1991 May; 18(1):24-30. PubMed ID: 2056349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Stereometric Analysis of Karyokinesis, Cytokinesis and Cell Arrangements during and following Fourth Cleavage Period in the Sea Urchin, Lytechinus variegatus: (sea urchin embryo/cell division patterns/stereo imaging/3-D reconstruction).
    Summers RG; Morrill JB; Leith A; Marko M; Piston DW; Stonebraker AT
    Dev Growth Differ; 1993 Feb; 35(1):41-57. PubMed ID: 37280928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of cell interactions and tissue mass on differentiation of sea urchin mesomeres.
    Khaner O; Wilt F
    Development; 1990 Jul; 109(3):625-34. PubMed ID: 2401215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Localization of concanavalin A--binding sites on neuroepithelial cells in early newt's neurula after treatment with noradrenalin.
    Radeva V; Ichev K; Ovtscharoff W
    Anat Anz; 1990; 171(2):109-14. PubMed ID: 2260761
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distribution of concanavalin A binding sites on the surface of dissociated rat submandibular gland acinar cells.
    Amakawa T; Barka T
    J Histochem Cytochem; 1975 Aug; 23(8):607-17. PubMed ID: 1159294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SoxB1 downregulation in vegetal lineages of sea urchin embryos is achieved by both transcriptional repression and selective protein turnover.
    Angerer LM; Newman LA; Angerer RC
    Development; 2005 Mar; 132(5):999-1008. PubMed ID: 15689377
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein synthesis in micromeres of the sea urchin egg.
    Spiegel M; Tyler A
    Science; 1966 Mar; 151(3715):1233-4. PubMed ID: 5948689
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface antigens involved in interactions of embryonic sea urchin cells.
    McClay DR
    Curr Top Dev Biol; 1979; 13 Pt 1():199-214. PubMed ID: 540531
    [No Abstract]   [Full Text] [Related]  

  • 30. Functional gap junctions in the early sea urchin embryo are localized to the vegetal pole.
    Yazaki I; Dale B; Tosti E
    Dev Biol; 1999 Aug; 212(2):503-10. PubMed ID: 10433838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sea urchin maternal and embryonic U1 RNAs are spatially segregated in early embryos.
    Nash MA; Kozak SE; Angerer LM; Angerer RC; Schatten H; Schatten G; Marzluff WF
    J Cell Biol; 1987 May; 104(5):1133-42. PubMed ID: 3553205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of four classes of cell surface antigens appearing at gastrulation in sea urchin embryos.
    McClay DR; Chambers AF
    Dev Biol; 1978 Mar; 63(1):179-86. PubMed ID: 631426
    [No Abstract]   [Full Text] [Related]  

  • 33. Krüppel-like is required for nonskeletogenic mesoderm specification in the sea urchin embryo.
    Yamazaki A; Kawabata R; Shiomi K; Tsuchimoto J; Kiyomoto M; Amemiya S; Yamaguchi M
    Dev Biol; 2008 Feb; 314(2):433-42. PubMed ID: 18166171
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A sea urchin in vivo model to evaluate Epithelial-Mesenchymal Transition.
    Romancino DP; Anello L; Lavanco A; Buffa V; Di Bernardo M; Bongiovanni A
    Dev Growth Differ; 2017 Apr; 59(3):141-151. PubMed ID: 28436008
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres.
    Revilla-i-Domingo R; Oliveri P; Davidson EH
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12383-8. PubMed ID: 17636127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Developmental potential of small micromeres in sea urchin embryos.
    Kurihara H; Amemiya S
    Zoolog Sci; 2005 Aug; 22(8):845-52. PubMed ID: 16141697
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulation of lymphocyte receptor mobility by locally bound concanavalin A.
    Yahara I; Edelman GM
    Proc Natl Acad Sci U S A; 1975 Apr; 72(4):1579-83. PubMed ID: 1055429
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane-microtubule interactions: concanavalin A capping induced redistribution of cytoplasmic microtubules and colchicine binding proteins.
    Albertini DF; Clark JI
    Proc Natl Acad Sci U S A; 1975 Dec; 72(12):4976-80. PubMed ID: 1061084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reversal by insulin of concanavalin A inhibition of myotube formation and evidence for common binding sites.
    Sandra A; Leon MA; Przybylski RJ
    Endocrinology; 1979 Aug; 105(2):391-401. PubMed ID: 572292
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Concanavalin A-binding by cells of the early chick embryo.
    Hook SL; Sanders EJ
    J Cell Physiol; 1977 Oct; 93(1):57-67. PubMed ID: 561795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.