These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 1162604)

  • 1. Biomechanical responses to open experimental spinal cord injury.
    Hung TK; Albin MS; Brown TD; Bunegin L; Albin R; Jannetta PJ
    Surg Neurol; 1975 Aug; 4(2):271-6. PubMed ID: 1162604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Animal models of spinal cord contusion injuries.
    Khan T; Havey RM; Sayers ST; Patwardhan A; King WW
    Lab Anim Sci; 1999 Apr; 49(2):161-72. PubMed ID: 10331546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The standardization of experimental impact injury to the spinal cord.
    Hung TK; Lin HS; Albin MS; Bunegin L; Jannetta PJ
    Surg Neurol; 1979 Jun; 11(6):470-7. PubMed ID: 483156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of cerebrospinal fluid on the biomechanics of spinal cord: an ex vivo bovine model using bovine and physical surrogate spinal cord.
    Jones CF; Kroeker SG; Cripton PA; Hall RM
    Spine (Phila Pa 1976); 2008 Aug; 33(17):E580-8. PubMed ID: 18670325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Spinal cord evoked potential in experimental spinal cord injury: the changes of spinal cord evoked potential following impact injury, and the correlation between the change in amplitude of the spinal cord evoked potential after injury and the prognosis for motor recovery of legs].
    Isu T; Iwasaki Y; Akino M; Abe H
    No Shinkei Geka; 1989 Jul; 17(7):629-34. PubMed ID: 2812263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Spinal cord evoked potential in experimental spinal cord injury--the changes in spinal cord evoked potential following impact injury, and effect of mannitol administration on acute experimental spinal cord injury].
    Isu T
    Hokkaido Igaku Zasshi; 1990 Mar; 65(2):142-51. PubMed ID: 2114347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation of cerebrospinal fluid serotonin and altered spinal cord blood flow in experimental trauma.
    Brodner RA; Dohrmann GJ; Roth RH; Rubin RA
    Surg Neurol; 1980 May; 13(5):337-43. PubMed ID: 7384998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elevation of neuron-specific enolase and S-100beta protein level in experimental acute spinal cord injury.
    Cao F; Yang XF; Liu WG; Hu WW; Li G; Zheng XJ; Shen F; Zhao XQ; Lv ST
    J Clin Neurosci; 2008 May; 15(5):541-4. PubMed ID: 18343116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental models for spinal cord injury research: physical and physiological considerations.
    Anderson TE; Stokes BT
    J Neurotrauma; 1992 Mar; 9 Suppl 1():S135-42. PubMed ID: 1588604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clip compression model is useful for thoracic spinal cord injuries: histologic and functional correlates.
    Poon PC; Gupta D; Shoichet MS; Tator CH
    Spine (Phila Pa 1976); 2007 Dec; 32(25):2853-9. PubMed ID: 18246008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Standardized" spinal cord trauma: biomechanical parameters and lesion volume.
    Dohrmann GJ; Panjabi MM
    Surg Neurol; 1976 Nov; 6(5):263-7. PubMed ID: 996723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of bone fragment impact velocity on biomechanical parameters related to spinal cord injury: a finite element study.
    Khuyagbaatar B; Kim K; Hyuk Kim Y
    J Biomech; 2014 Aug; 47(11):2820-5. PubMed ID: 24891036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavioral and histological outcomes following graded spinal cord contusion injury in the C57Bl/6 mouse.
    Ma M; Basso DM; Walters P; Stokes BT; Jakeman LB
    Exp Neurol; 2001 Jun; 169(2):239-54. PubMed ID: 11358439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional finite element model of the cervical spinal cord: preliminary results of injury mechanism analysis.
    Li XF; Dai LY
    Spine (Phila Pa 1976); 2009 May; 34(11):1140-7. PubMed ID: 19444060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Change of motor evoked potential of the diaphragm after graded upper cervical spinal cord injury in rats].
    Zhou XH; Jia LS; Yuan W; Zhang YZ; Zhang Y; Yan WJ
    Zhonghua Wai Ke Za Zhi; 2007 Mar; 45(6):387-9. PubMed ID: 17537323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recording of spared motor evoked potentials and its augmentation by 4-aminopyridine in chronic spinal cord-injured rats.
    Yu K; Li J; Rong W; Jia L; Yuan W; Ye X; Shi Z; Dai B
    Chin Med J (Engl); 2001 Feb; 114(2):155-61. PubMed ID: 11780197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue displacement and impact force are important contributors to outcome after spinal cord contusion injury.
    Ghasemlou N; Kerr BJ; David S
    Exp Neurol; 2005 Nov; 196(1):9-17. PubMed ID: 16023101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinal cord edema and changes in tissue content of Na+, K+, and Mg2+ after impact trauma in rats.
    Demediuk P; Lemke M; Faden AI
    Adv Neurol; 1990; 52():225-32. PubMed ID: 2396516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Experimental observations on spinal cord injury produced by electrifying the vessels of the cord in dogs].
    Zheng WJ
    Zhonghua Wai Ke Za Zhi; 1989 Jan; 27(1):52-4, 63. PubMed ID: 2776530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone marrow stromal cells infused into the cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation.
    Ohta M; Suzuki Y; Noda T; Ejiri Y; Dezawa M; Kataoka K; Chou H; Ishikawa N; Matsumoto N; Iwashita Y; Mizuta E; Kuno S; Ide C
    Exp Neurol; 2004 Jun; 187(2):266-78. PubMed ID: 15144853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.