These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 1162604)

  • 21. [Effect of mannitol administration and myelotomy on acute experimental spinal cord injury: investigation by spinal cord evoked potential].
    Isu T; Iwasaki Y; Akino M; Abe H
    No Shinkei Geka; 1990 Mar; 18(3):267-72. PubMed ID: 2113634
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-level relationship for nitric oxide and the protective effects of aminoguanidine in experimental spinal cord injury.
    Soy O; Aslan O; Uzun H; Barut S; Iğdem AA; Belce A; Colak A
    Acta Neurochir (Wien); 2004 Dec; 146(12):1329-35; discussion 1335-6. PubMed ID: 15309585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Translational constraint influences dynamic spinal canal occlusion of the thoracic spine: an in vitro experimental study.
    Zhu Q; Lane C; Ching RP; Gordon JD; Fisher CG; Dvorak MF; Cripton PA; Oxland TR
    J Biomech; 2008; 41(1):171-9. PubMed ID: 17709110
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A reproducible spinal cord injury model in the cat.
    Ford RW
    J Neurosurg; 1983 Aug; 59(2):268-75. PubMed ID: 6864294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multimodal sensor-based weight drop spinal cord impact system for large animals.
    Kim H; Kim JW; Hyun JK; Park I
    Spine J; 2017 Dec; 17(12):1947-1955. PubMed ID: 28844010
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tissue pressure gradients in spinal cord injury.
    Shapiro K; Shulman K; Marmarou A; Poll W
    Surg Neurol; 1977 May; 7(5):275-9. PubMed ID: 860195
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Possible mechanisms for observed pathophysiological variability in experimental spinal cord injury by the method of Allen.
    Koozekanani SH; Vise WM; Hashemi RM; McGhee RB
    J Neurosurg; 1976 Apr; 44(4):429-34. PubMed ID: 1255233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of cerebrospinal fluid thickness on traumatic spinal cord deformation.
    Persson C; Summers J; Hall RM
    J Appl Biomech; 2011 Nov; 27(4):330-5. PubMed ID: 21896951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of impounder contact area on experimental spinal cord injury.
    Gerber AM; Corrie WS
    J Neurosurg; 1979 Oct; 51(4):539-42. PubMed ID: 479936
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stress-strain relationship and neurological sequelae of uniaxial elongation of the spinal cord of cats.
    Hung TK; Chang GL; Chang JL; Albin MS
    Surg Neurol; 1981 Jun; 15(6):471-6. PubMed ID: 7280961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental spinal cord trauma. A biomechanical viewpoint.
    Panjabi MM
    Paraplegia; 1987 Jun; 25(3):217-20. PubMed ID: 3601430
    [No Abstract]   [Full Text] [Related]  

  • 32. Cerebrospinal fluid lactate and electrolyte levels following experimental spinal cord injury.
    Anderson DK; Prockop LD; Means ED; Hartley LE
    J Neurosurg; 1976 Jun; 44(6):715-22. PubMed ID: 1271092
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A method of quantitating injury inflicted in acute spinal cord studies.
    Daniell HB; Francis WW; Lee WA; Ducker TB
    Paraplegia; 1975 Nov; 13(3):137-42. PubMed ID: 813173
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomechanical aspects of a fluid percussion model of brain injury.
    Thibault LE; Meaney DF; Anderson BJ; Marmarou A
    J Neurotrauma; 1992; 9(4):311-22. PubMed ID: 1291691
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomechanics of experimental spinal cord trauma.
    Dohrmann GJ; Panjabi MM; Banks D
    J Neurosurg; 1978 Jun; 48(6):993-1001. PubMed ID: 660252
    [No Abstract]   [Full Text] [Related]  

  • 36. The importance of fluid-structure interaction in spinal trauma models.
    Persson C; Summers J; Hall RM
    J Neurotrauma; 2011 Jan; 28(1):113-25. PubMed ID: 21047151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of bone fragment size and cerebrospinal fluid on spinal cord deformation during trauma: an ex vivo study.
    Persson C; McLure SW; Summers J; Hall RM
    J Neurosurg Spine; 2009 Apr; 10(4):315-23. PubMed ID: 19441988
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomechanics of the thoracic spinal cord and thorax in experimentally produced trauma.
    Dohrman GJ; Panjabi MM; Dicker DB
    Surg Forum; 1977; 28():448-50. PubMed ID: 617499
    [No Abstract]   [Full Text] [Related]  

  • 39. Studies on the human spontaneous electromyelogram (EMyeloG). III. Spontaneous spinal cord activity of the cat relevant to the human spontaneous EMyeloG.
    Sarica Y; Eti M; Ertekin C
    Electroencephalogr Clin Neurophysiol; 1983 Feb; 55(2):168-79. PubMed ID: 6185315
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elevated cerebrospinal fluid levels of 5-hydroxytryptamine following experimental spinal cord trauma.
    Brodner RA; Dohrmann GJ; Roth RH; Rubin RA
    Brain Res; 1976 Dec; 118(2):348-51. PubMed ID: 1000300
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.