BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 11641352)

  • 1. Nitric oxide affects sarcoplasmic calcium release in skeletal myotubes.
    Heunks LM; Machiels HA; Dekhuijzen PN; Prakash YS; Sieck GC
    J Appl Physiol (1985); 2001 Nov; 91(5):2117-24. PubMed ID: 11641352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of sulfhydryls of the skeletal muscle calcium release channel by organic mercurial compounds alters Ca2+ affinity of regulatory Ca2+ sites in single channel recordings and [3H]ryanodine binding.
    Suko J; Hellmann G
    Biochim Biophys Acta; 1998 Sep; 1404(3):435-50. PubMed ID: 9739172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular interaction between nitric oxide and ryanodine receptors of skeletal and cardiac sarcoplasmic reticulum.
    Salama G; Menshikova EV; Abramson JJ
    Antioxid Redox Signal; 2000; 2(1):5-16. PubMed ID: 11232600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of skeletal muscle sarcoplasmic reticulum Ca2+-ATPase by nitric oxide.
    Ishii T; Sunami O; Saitoh N; Nishio H; Takeuchi T; Hata F
    FEBS Lett; 1998 Nov; 440(1-2):218-22. PubMed ID: 9862458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible thiol-dependent activation of ryanodine-sensitive Ca2+ release channel by etoposide (VP-16) phenoxyl radical.
    Fabisiak JP; Ritov VB; Kagan VE
    Antioxid Redox Signal; 2000; 2(1):73-82. PubMed ID: 11232603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2-Hydroxycarbazole induces Ca2+ release from sarcoplasmic reticulum by activating the ryanodine receptor.
    Tovey SC; Longland CL; Mezna M; Michelangeli F
    Eur J Pharmacol; 1998 Aug; 354(2-3):245-51. PubMed ID: 9754926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide activates or inhibits skeletal muscle ryanodine receptors depending on its concentration, membrane potential and ligand binding.
    Hart JD; Dulhunty AF
    J Membr Biol; 2000 Feb; 173(3):227-36. PubMed ID: 10667918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox regulation of calcium release in skeletal and cardiac muscle.
    Hidalgo C; Aracena P; Sanchez G; Donoso P
    Biol Res; 2002; 35(2):183-93. PubMed ID: 12415735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xestoquinone, isolated from sea sponge, causes Ca(2+) release through sulfhydryl modification from skeletal muscle sarcoplasmic reticulum.
    Ito M; Hirata Y; Nakamura H; Ohizumi Y
    J Pharmacol Exp Ther; 1999 Dec; 291(3):976-81. PubMed ID: 10565813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide inhibits calcium release from sarcoplasmic reticulum of porcine tracheal smooth muscle cells.
    Kannan MS; Prakash YS; Johnson DE; Sieck GC
    Am J Physiol; 1997 Jan; 272(1 Pt 1):L1-7. PubMed ID: 9038895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative modification of ion channel activity of ryanodine receptor.
    Anzai K; Ogawa K; Ozawa T; Yamamoto H
    Antioxid Redox Signal; 2000; 2(1):35-40. PubMed ID: 11232597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of propofol on calcium homeostasis in human skeletal muscle.
    Migita T; Mukaida K; Hamada H; Kobayashi M; Nishino I; Yuge O; Kawamoto M
    Anaesth Intensive Care; 2009 May; 37(3):415-25. PubMed ID: 19499861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitroxyl triggers Ca2+ release from skeletal and cardiac sarcoplasmic reticulum by oxidizing ryanodine receptors.
    Cheong E; Tumbev V; Abramson J; Salama G; Stoyanovsky DA
    Cell Calcium; 2005 Jan; 37(1):87-96. PubMed ID: 15541467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium pool size modulates the sensitivity of the ryanodine receptor channel and calcium-dependent ATPase of heavy sarcoplasmic reticulum to extravesicular free calcium concentration.
    Marie V; Silva JE
    J Cell Physiol; 1998 Jun; 175(3):283-94. PubMed ID: 9572473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use-dependent inhibition of the skeletal muscle ryanodine receptor by the suramin analogue NF676.
    Wolner I; Kassack MU; Ullmann H; Karel A; Hohenegger M
    Br J Pharmacol; 2005 Oct; 146(4):525-33. PubMed ID: 16056233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selenium compounds modulate the calcium release channel/ryanodine receptor of rabbit skeletal muscle by oxidizing functional thiols.
    Xia R; Ganther HE; Egge A; Abramson JJ
    Biochem Pharmacol; 2004 Jun; 67(11):2071-9. PubMed ID: 15135304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of the skeletal muscle ryanodine receptor calcium release channel by nitric oxide.
    Mészáros LG; Minarovic I; Zahradnikova A
    FEBS Lett; 1996 Feb; 380(1-2):49-52. PubMed ID: 8603745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional role of hyperreactive sulfhydryl moieties within the ryanodine receptor complex.
    Pessah IN; Feng W
    Antioxid Redox Signal; 2000; 2(1):17-25. PubMed ID: 11232595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mg2+ dependence of halothane-induced Ca2+ release from the sarcoplasmic reticulum in rat skeletal muscle.
    Duke AM; Hopkins PM; Steele DS
    J Physiol; 2003 Sep; 551(Pt 2):447-54. PubMed ID: 12909676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of InsP3 and ryanodine receptors in the activation of capacitative Ca2+ entry by store depletion or hypoxia in canine pulmonary arterial smooth muscle cells.
    Ng LC; Wilson SM; McAllister CE; Hume JR
    Br J Pharmacol; 2007 Sep; 152(1):101-11. PubMed ID: 17592501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.